

Broken Tag Generator

Objective

Help Noel Boetie fix the Tag Generator in the Wrapping Room. What value is in the environment variable GREETZ? Talk

to Holly Evergreen in the kitchen for help with this.

Difficulty: 4/5

Holly Evergreen's dialog:

Hi Santa!

If you have a chance, I'd love to get your feedback on the Tag Generator updates!

I'm a little concerned about the file upload feature, but Noel thinks it will be fine.

Hints

Is there an endpoint that will print arbitrary files?

We might be able to find the problem if we can get source code!

Can you figure out the path to the script? It's probably on error pages!

Once you know the path to the file, we need a way to download it!

If you're having trouble seeing the code, watch out for the Content-Type! Your browser might be trying to help (badly)!

I'm sure there's a vulnerability in the source somewhere... surely Jack wouldn't leave their mark?

If you find a way to execute code blindly, I bet you can redirect to a file then download that file!

Remember, the processing happens in the background so you might need to wait a bit after exploiting but before

grabbing the output!

Solution

This objective is about web application vulnerabilities. The Tag Generator is a web application to print To:/From: tags for

presents:

https://tag-generator.kringlecastle.com/
https://tag-generator.kringlecastle.com/

The objective asks us to find the content of the GREETZ environment variable from the web application process. From

the hints, we'll be looking for two vulerabilities: a Local File Inclusion (LFI), and a Remote Code Execution (RCE). Also,

Holly has concerns about the 'file upload' function, which is a very typical source of LFI vulnerabilities.

There are at least two paths to solve this objective: a simple LFI, and a longer path from LFI to RCE. I used the simple

path and was able to solve the challenge with a single request to the web application. I'll detail the longer path later.

Some familiarty with web technologies is expected in this walkthrough.

Either way, we need to watch the traffic between the browser and the web app. A simple method is to se the Developer

Tools in the browser, specifically the Network tab. In there, we can see the requests sent to the web app and the

responses. We could also use a Man In The Middle proxy such as Burp proxy or OWASP ZAP, setting those up is left as

an exercise to the reader.

Selecting an image and hitting Upload in the application gives the following requests between the brower and the web

app:

https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/11.1-Testing_for_Local_File_Inclusion
https://owasp.org/www-community/attacks/Command_Injection
https://portswigger.net/burp
https://www.zaproxy.org/

First, the browser sents an HTTP POST request to https://tag-generator.kringlecastle.com/upload with the

picture data in the POST body. The next request is an HTTP GET to https://tag-generator.kringlecastle.com/

image?id=4ac2c75d-c85d-4cae-972a-610cbb8f978d.jpg , which returns the picture data we just uploaded.

Attempting to send a non-picture file results in an interesting error message:

We can deduce several things from this error:

The application is written in the Ruby programming language, given the file extension of .rb .

Googling the string RackMultipart returns several results asking about Ruby on Rails, a framework for

developing web applications in Ruby.

Some part of the path to the application path is /app/lib/app.rb .

•

•

•

The application writes temporary files to the directory `/tmp'.

From the directory names, it's likely the application is running under some flavor of Unix, most likely Linux.

The 'easy' way

Going back to the successful upload, the GET request provides an interesting path of attack: the id parameter. The

application writes the uploaded file to /tmp , then returns the filename to the application, which then does a subsequent

GET with that filename in the ?id= parameter. It may be that we can abuse that parameter to read other files on the

host.

A very handy resource for web application testing is Payloads All The Things. We can look in File Inclusion for some

ideas on possible paylods to abuse the id parameter. Attemping a simple Path Traversal attack with curl in a terminal

window yields a positive results:

curl https://tag-generator.kringlecastle.com/image?id=../../../../etc/passwd allowed us to read the

password file. We could poke around the filesystem and look for the source to the application, but the objective is

asking us for the content of an environment variable in the process the application is running. In Linux, the /proc

filesystem has information about all the running processes, and the special link /proc/self points to the current

process. Inside a /proc entry is a special file environ , which contains the environment variables of that process. We

can abuse the id parameter to read /proc/self/environ and get the environment variables for the web server

process:

curl -o - https://tag-generator.kringlecastle.com/image?id=../../../../proc/self/environ

•

•

https://github.com/swisskyrepo/PayloadsAllTheThings
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/File%20Inclusion

We can see the GREETZ environment variable is set to JackFrostWasHere .

The 'hard' way

(to be filled in)

Answer

JackFrostWasHere

	Broken Tag Generator
	Objective
	Holly Evergreen's dialog:
	Hints
	Solution
	The 'easy' way
	The 'hard' way

	Answer

